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Cosmological Principle: assumes that the Universe is the same in every point (at large 
scales), what from a mathematical point of view, it means that the Universe is homogeneous 
and isotropic.

An expanding Universe that starts in a initial singularity.
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w > −1, quintessence fluid ,
w = −1, cosmological constant ,
w < −1, phantom fluid .

(1)

ds2 = −dt2+a2(t)

�
dr2

1− k r2
+ dΩ2

�

(2)

hDE (3)

• Type I (“Big Rip”): For t → ts,
a → ∞ and ρ → ∞, |p| → ∞.
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General Relativity: Big Bang model

FLRW equations in General Relativity
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linear equations. However they exhibit simple analyti-
cal solutions in the presence of generic symmetries. The
Friedmann-Robertson-Walker (FRW) metric is based
upon the assumption of homogeneity and isotropy of the
universe which is approximately true on large scales. The
small deviation from homogeneity at early epochs played
a very important role in the dynamical history of our uni-
verse. Small initial density perturbations grew via grav-
itational instability into the structure we see today in
the universe. The temperature anisotropies observed in
the Cosmic Microwave Background (CMB) are believed
to have originated from quantum fluctuations generated
during an inflationary stage in the early universe. See
Refs. [70, 71, 72, 73, 74, 75, 76] for details on density per-
turbations predicted by inflationary cosmology. In this
section we shall review the main features of the homo-
geneous and isotropic cosmology necessary for the subse-
quent sections.

The FRW metric is given by [70, 77, 78, 79]

ds2 = −dt2 + a2(t)

[
dr2

1 − Kr2
+ r2(dθ2 + sin2 θdφ2)

]
,

(1)

where a(t) is scale factor with cosmic time t. The coordi-
nates r, θ and φ are known as comoving coordinates. A
freely moving particle comes to rest in these coordinates.

Equation (1) is a purely kinematic statement. In this
problem the dynamics is associated with the scale factor–
a(t). Einstein equations allow us to determine the scale
factor provided the matter content of the universe is spec-
ified. The constant K in the metric (1) describes the ge-
ometry of the spatial section of space time, with closed,
flat and open universes corresponding to K = +1, 0,−1,
respectively.

It may be convenient to write the metric (1) in the
following form:

ds2 = −dt2 + a2(t)
[
dχ2 + f2

K(χ)(dθ2 + sin2 θdφ2)
]

, (2)

where

fK(χ) =






sinχ , K = +1 ,
χ , K = 0 ,
sinhχ , K = −1 .

(3)

A. Evolution equations

The differential equations for the scale factor and the
matter density follow from Einstein’s equations [77]

Gµ
ν ≡ Rµ

ν −
1

2
δµ
ν R = 8πGT µ

ν , (4)

where Gµ
ν is the Einstein tensor, and Rµ

ν is the Ricci
tensor which depends on the metric and its derivatives,
R is the Ricci scalar and T µ

ν is the energy momentum

tensor. In the FRW background (1) the curvature terms
are given by [78]

R0
0 =

3ä

a
, (5)

Ri
j =

(
ä

a
+

2ȧ2

a2
+

2K

a2

)
δi
j , (6)

R = 6

(
ä

a
+

ȧ2

a2
+

K

a2

)
, (7)

where a dot denotes a derivative with respect to t.
Let us consider an ideal perfect fluid as the source of

the energy momentum tensor T µ
ν . In this case we have

T µ
ν = Diag (−ρ, p, p, p) , (8)

where ρ and p are the energy density and the pressure
density of the fluid, respectively. Then Eq. (4) gives the
two independent equations

H2 ≡
(

ȧ

a

)2

=
8πGρ

3
−

K

a2
, (9)

Ḣ = −4πG(p + ρ) +
K

a2
, (10)

where H is the Hubble parameter, ρ and p denote the to-
tal energy density and pressure of all the species present
in the universe at a given epoch.

The energy momentum tensor is conserved by virtue of
the Bianchi identities, leading to the continuity equation

ρ̇ + 3H(ρ + p) = 0 . (11)

Equation (11) can be derived from Eqs. (9) and (10),
which means that two of Eqs. (9), (10) and (11) are in-
dependent. Eliminating the K/a2 term from Eqs. (9) and
(10), we obtain

ä

a
= −

4πG

3
(ρ + 3p) . (12)

Hence the accelerated expansion occurs for ρ + 3p < 0.
One can rewrite Eq. (9) in the form:

Ω(t) − 1 =
K

(aH)2
, (13)

where Ω(t) ≡ ρ(t)/ρc(t) is the dimensionless density pa-
rameter and ρc(t) = 3H2(t)/8πG is the critical density.
The matter distribution clearly determines the spatial
geometry of our universe, i.e.,

Ω > 1 or ρ > ρc → K = +1 , (14)

Ω = 1 or ρ = ρc → K = 0 , (15)

Ω < 1 or ρ < ρc → K = −1 . (16)

Observations have shown that the current universe is very
close to a spatially flat geometry (Ω $ 1) [61]. This is
actually a natural result from inflation in the early uni-
verse [70]. Hence we will therefore consider a flat universe
(K = 0) in the rest of this section.
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B. The evolution of the universe filled with a
perfect fluid

Let us consider the evolution of the universe filled with
a barotropic perfect fluid with an equation of state

w = p/ρ , (17)

where w is assumed to be constant. Then by solving the
Einstein equations given in Eqs. (9) and (10) with K = 0,
we obtain

H =
2

3(1 + w)(t − t0)
, (18)

a(t) ∝ (t − t0)
2

3(1+w) , (19)

ρ ∝ a−3(1+w) , (20)

where t0 is constant. We note that the above solution
is valid for w #= −1. The radiation dominated universe
corresponds to w = 1/3, whereas the dust dominated
universe to w = 0. In these cases we have

Radiation : a(t) ∝ (t − t0)
1/2 , ρ ∝ a−4 , (21)

Dust : a(t) ∝ (t − t0)
2/3 , ρ ∝ a−3 . (22)

Both cases correspond to a decelerated expansion of the
universe.

From Eq. (12) an accelerated expansion (ä(t) > 0)
occurs for the equation of state given by

w < −1/3 . (23)

In order to explain the current acceleration of the uni-
verse, we require an exotic energy dubbed “dark energy”
with equation of state satisfying Eq. (23). We note that
Newton gravity can not account for the accelerated ex-
pansion. Let us consider a homogeneous sphere whose
radius and energy density are a and ρ, respectively. The
Newton’s equation of motion for a point particle with
mass m on this sphere is give by

mä = −
Gm

a2

(
4πa3ρ

3

)
,

→
ä

a
= −

4πG

3
ρ . (24)

The difference compared to the Einstein equation (12)
is the absence of the pressure term, p. This appears in
Einstein equations by virtue of relativistic effects. The
condition (23) means that we essentially require a large
negative pressure in order to give rise to an accelerated
expansion. We stress here that Newton gravity only leads
to a decelerated expansion of the universe.

From Eq. (11) the energy density ρ is constant for w =
−1. In this case the Hubble rate is also constant from
Eq. (9), giving the evolution of the scale factor:

a ∝ eHt , (25)

which is the de-Sitter universe. As we will see in the
Sec. IV, this exponential expansion also arises by includ-
ing a cosmological constant, Λ, in the Einstein equations.

So far we have restricted our attention to the equation
of state: w ≥ −1. Recent observations suggest that the
equation of state which is less than −1 can be also al-
lowed [80]. This specific equation of state corresponds
to a phantom (ghost) dark energy [37] component and
requires a separate consideration (see also Ref. [81]). We
first note that Eq. (19) describes a contracting universe
for w < −1. There is another expanding solution given
by

a(t) = (ts − t)
2

3(1+w) , (26)

where ts is constant. This corresponds to a super-
inflationary solution where the Hubble rate and the scalar
curvature grow:

H =
n

ts − t
, n = −

2

3(1 + w)
> 0 , (27)

R = 6
(
2H2 + Ḣ

)
=

6n(2n + 1)

(ts − t)2
. (28)

The Hubble rate diverges as t → ts, which corresponds
to an infinitely large energy density at a finite time in the
future. The curvature also grows to infinity as t → ts.
Such a situation is referred to as a Big Rip singular-
ity [82]. This cataclysmic conclusion is not inevitable
in these models, and can be avoided in specific models
of phantom fields with a top-hat potential [83, 84]. It
should also be emphasized that we expect quantum ef-
fects to become important in a situation when the curva-
ture of the universe becomes large. In that case we should
take into account higher-order curvature corrections to
the Einstein Hilbert action which crucially modifies the
structure of the singularity, as we will see in Sec. XIV.

III. OBSERVATIONAL EVIDENCE FOR DARK
ENERGY

In this section we briefly review the observational evi-
dence for dark energy, concentrating on the types of ob-
servation that have been introduced. Later, in Sec. XIII
we will return to discuss in more detail the observational
constraints on the dark energy equation of state.

A. Luminosity distance

In 1998 the accelerated expansion of the universe was
pointed out by two groups from the observations of Type
Ia Supernova (SN Ia) [1, 2]. We often use a redshift to
describe the evolution of the universe. This is related to
the fact that light emitted by a stellar object becomes
red-shifted due to the expansion of the universe. The

For a perfect fluid with an equation of state, 
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ä

a
= −

4πG

3
ρ . (24)

The difference compared to the Einstein equation (12)
is the absence of the pressure term, p. This appears in
Einstein equations by virtue of relativistic effects. The
condition (23) means that we essentially require a large
negative pressure in order to give rise to an accelerated
expansion. We stress here that Newton gravity only leads
to a decelerated expansion of the universe.

From Eq. (11) the energy density ρ is constant for w =
−1. In this case the Hubble rate is also constant from
Eq. (9), giving the evolution of the scale factor:

a ∝ eHt , (25)

which is the de-Sitter universe. As we will see in the
Sec. IV, this exponential expansion also arises by includ-
ing a cosmological constant, Λ, in the Einstein equations.

So far we have restricted our attention to the equation
of state: w ≥ −1. Recent observations suggest that the
equation of state which is less than −1 can be also al-
lowed [80]. This specific equation of state corresponds
to a phantom (ghost) dark energy [37] component and
requires a separate consideration (see also Ref. [81]). We
first note that Eq. (19) describes a contracting universe
for w < −1. There is another expanding solution given
by

a(t) = (ts − t)
2

3(1+w) , (26)

where ts is constant. This corresponds to a super-
inflationary solution where the Hubble rate and the scalar
curvature grow:

H =
n

ts − t
, n = −

2

3(1 + w)
> 0 , (27)

R = 6
(
2H2 + Ḣ
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which contains an initial singularity (and perhaps a future one..).
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We need something else: Dark energy or modified gravity....but how is the Equation of State?
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this case Eq. (49) gives

H0t0 =

∫ ∞

0

dz

(1 + z)
√

Ω(0)
m (1 + z)3 + Ω(0)

Λ

=
2

3
√

Ω(0)
Λ

ln




1 +

√
Ω(0)

Λ√
Ω(0)

m



 , (54)

where Ω(0)
m +Ω(0)

Λ = 1. The asymptotic values are H0t0 →
∞ for Ω(0)

m → 0 and H0t0 → 2/3 for Ω(0)
m → 1. In Fig. 3

we plot the age t0 versus Ω(0)
m . The age of the universe

increases as Ω(0)
m decreases. When Ω(0)

m = 0.3 and Ω(0)
Λ =

0.7 one has t0 = 0.964H−1
0 , which corresponds to t0 =

13.1Gyr for h = 0.72. Hence this easily satisfies the
constraint t0 > 11-12Gyr coming from the oldest stellar
populations. Thus the presence of Λ elegantly solves the
age-crisis problem. In [103], the authors manage to go
further and find the solution for the scale factor in a flat
Universe driven by dust plus a component characterized
by a constant parameter of state which dominates in the
asymptotic future.

D. Constraints from the CMB and LSS

The observations related to the CMB [61] and large-
scale structure (LSS) [63, 64] independently support the
ideas of a dark energy dominated universe. The CMB
anisotropies observed by COBE in 1992 and by WMAP
in 2003 exhibited a nearly scale-invariant spectra of pri-
mordial perturbations, which agree very well with the
prediction of inflationary cosmology. However, note that
the best fit power-law flat ΛCDM model obtained from
using only the WMAP data now gives a scalar spectral
tilt of ns = 0.951+0.015

−0.019, significantly less than scale in-
variant! [61]. The position of the first acoustic peak
around l = 200 constrains the curvature of the universe
to be |1−Ωtotal| = 0.030+0.026

−0.025 $ 1 [102] as predicted by
the inflationary paradigm. It is worth pointing out that
Weinberg in Ref. [104] provides an analytic expression for
the position of the first peak showing how it depends on
the background distribution of energy densities between
matter and a cosmological constant.

Using the most recent WMAP data [61] with an as-
sumption of constant equation of state wDE = −1 for
dark energy, then combining WMAP and the Super-

nova legacy Survey implies Ω(0)
K = −0.015+0.02

−0,016, consis-
tent with a flat universe. Combining with the HST key
project constraint on H0 provides a tighter constraint,

Ω(0)
K = −0.010+0.016

−0,009 and Ω(0)
Λ = 0.72 ± 0.04 (to be com-

pared with earlier pre WMAP3 results Ω(0)
Λ = 0.69+0.03

−0.06,
which assumed a flat universe with a prior for the Hubble
constant h = 0.71 ± 0.076 [105]) .

In Fig. 4 we plot the confidence regions coming from
SN Ia, CMB(WMAP1) and large-scale galaxy cluster-
ing [106] (see Ref. [107] for an earlier work introducing
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FIG. 4: The Ω(0)
m -Ω(0)

Λ confidence regions constrained from
the observations of SN Ia, CMB and galaxy clustering. We
also show the expected confidence region from a SNAP satel-
lite for a flat universe with Ω(0)

m = 0.28. From Ref. [106].

the “cosmic triangle”). Clearly the flat universe with-
out a cosmological constant is ruled out. The compi-
lation of three different cosmological data sets strongly
reinforces the need for a dark energy dominated universe

with Ω(0)
Λ % 0.7 and Ω(0)

m % 0.3. Amongst the matter con-
tent of the universe, baryonic matter amounts to only 4
%. The rest of the matter (27 %) is believed to be in the
form of a non-luminous component of non-baryonic na-
ture with a dust like equation of state (w = 0) known as
Cold Dark Matter (CDM). Dark energy is distinguished
from dark matter in the sense that its equation of state
is different (w < −1/3), allowing it to give rise to an
accelerated expansion.

The discussion in this section has been based on the
assumption that the equation of state of dark energy is
constant (wΛ = −1). This scenario, the so called ΛCDM
model, has become the standard model for modern cos-
mology. However, it may be that this is not the true
origin of dark energy. If scalar fields turn out to be re-
sponsible for it, then the equation of state of dark energy
can be dynamical. In order to understand the origin of
dark energy it is important to distinguish between the
cosmological constant and dynamical dark energy mod-
els. The observations of SN Ia alone are still not sufficient
to establish evidence of a dynamically changing equation
of state, but this situation could well improve through
future observations. In a dark energy dominated uni-
verse the gravitational potential varies unlike the case of
matter dominated universe, which leads to an imprint on

G. Aldering [SNAP Collaboration], “Future Research 
Direction and Visions for Astronomy”, Alan M. 
Dressler, editor, Proceedings of the SPIE, Volume 4835, 
pp. 146-157 [arXiv:astro-ph/0209550].
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Dark energy equation of state

F (R) = R
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F(R) gravity

Action,

1

I. FORMULAE

f(R) = R−RHS

c1(R/RHS)n

c2(R/RHS)n + 1
, f(R) = R+

Rn(aRn − b)

1 + cRn
. (1)

SEH =

�
d4x

√
−g

�
R+ 2κ2Lm

�
→ S =

�
d4x

√
−g

�
f(R) + 2κ2Lm

�
. (2)

Field equations,

aside from the gravity part, also contains a matter contribution, namely

S =

�
d
4
x
√
−g

�
f(R) + 2κ2Lm

�
. (2.1)

Here the coupling constant is given by κ2 = 8πG, while Lm stands for the Lagrangian

corresponding to the matter that fills the particular system to be studied. Note that the

Hilbert-Einstein action is recovered for f(R) = R in (2.1), The field equations corresponding

to action (2.1) are obtained by the variation of this action with respect to the metric tensor

gµν , what yields

RµνfR(R)− 1

2
gµνf(R) + gµν�fR(R)−∇µ∇νfR(R) = κ2T (m)

µν . (2.2)

Here the subscript R denotes derivatives with respect to R. We assume a flat FLRW metric,

ds
2
= −dt

2
+ a(t)

2
3�

i=1

dx
i2

. (2.3)

Then, for this metric, modified FLRW equations are obtained through the 00 and ij compo-

nents of the field equations (2.2),

H
2
=

1

3fR

�
κ2ρm +

RfR − f

2
− 3HṘfRR

�
,

−3H
2 − 2Ḣ =

1

fR

�
κ2pm + Ṙ

2
fRRR + 2HṘfRR + R̈fRR +

1

2
(f −RfR)

�
, (2.4)

where dots denote derivatives with respect the time, Hubble parameter is defined as usual

H(t) = ȧ/a, and Ricci scalar for the metric (2.3) is R = 6 (2H
2
+Ḣ). Here, we are interested

in studying a subclass of modified gravities, the so-called viable f(R) gravities, as they

accomplish some indispensable conditions to be considered realistic candidates to describe

the universe evolution. This kind of f(R) gravities are usually described by actions of the

type,

f(R) = R+ F (R) . (2.5)

This action basically represents Hilbert-Einstein action plus an additional term that should

have only effects at cosmological scales, while at local scales, General Relativity should be

recovered. In order to avoid serious problems with known physics, one has to choose the F (R)

function such that the theory contains flat solutions and passes also local gravity tests (see

[14]). Viable gravities are able to satisfy these constraints, and to avoid large instabilities in

the presence of matter distributions, as well as the anti-gravity regime by imposing positivity

in the first derivative of the action, 1+FR > 0, and the appropriate form of the function F (R)

(see [15]-[17]). Moreover, on the cosmological level, these theories are capable to reproduce

the effects of dark energy, and even inflation. Note that both equations in (2.4) are written

in such a way that F (R)-terms are put on the matter side (see Ref. [6]); thus we may define

an energy density for the extra F (R)-terms. Hence, the first FLRW equation in (2.4) can be

rewritten for the kind of actions (2.5) in terms of the cosmological parameters Ωi,

1 = Ωm + ΩF (R) , where

– 3 –

where as usual the energy-momentum tensor is defined as:
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Viable f(r) gravity

Viability conditions for F(R) gravity

3. fR → 0 as R → ∞ . GR has to be recovered at early times. Together
with fRR > 0, implies fR < 0, and consequently −1 < fR < 0.

2. 1 + fR > 0, which avoids the appearance of a negative effective gravita-
tional coupling Geff = G/(1 + fR), and the anti-gravity regime, implying also
the avoidance of the graviton to turn into a ghost.

1. fRR > 0 for hight curvature, which ensures the existence of stable high
curvature regimes, as the matter dominated epoch.

4. |fR| � 1 at recent epochs, which is imposed by local gravity tests. Nev-
ertheless, it is not clear the limit for this constraint.

L. Pogosian and A. Silvestri, Phys. Rev. D77 023503, (2008).
A. D. Dolgov and M. Kawasaki, Phys. Lett. B 573, 1 (2003).

5. The action should have a very particular form in order to avoid the Dolgov-
Kawasaki instability.



Some viable f(R) gravity models

In some limit, GR is recovered, the local violations are avoided, and the non-linear part become important for large 
scales, also avoids matter instabilities...but this kind of models usually cross the phantom barrier, which may lead to 
future singularities. 

3

II. GEOMETRICAL DARK ENERGY MODEL AND BEHAVIOUR OF ITS FRW SOLUTIONS

Field equations following from (1) can be written in the following Einsteinian form (though gravity itself is not the
Einstein one):

Rν
µ −

1

2
δν
µR = −8πG

(

T ν
µ(m) + T ν

µ(DE)

)

(2)

where

8πGT ν
µ(DE) ≡ F ′(R)Rν

µ −
1

2
F (R)δν

µ +
(

∇µ∇ν − δν
µ∇ρ∇ρ

)

F ′(R) , F (R) ≡ f(R) − R (3)

and T ν
µ(m) follows from variation of Lm and satisfies the generalized conservation law T ν

µ;ν(m) = 0 separately (since

the left-hand side of Eq. (2) and the right-hand side of Eq. (3) satisfy this condition, too). There exists a subtlety in
this representation that is discussed below. The trace of Eq. (2) reads

3∇µ∇µf ′ − Rf ′ + 2f = 8πGTm . (4)

Constant curvature solutions (de Sitter ones for R > 0) are roots of the algebraic equation Rf ′ = 2f .
Let us take f(R) in the following 3-parametric form:

f(R) = R + λR0

(

(

1 +
R2

R2
0

)−n

− 1

)

(5)

with n, λ > 0 and R0 of the order of the presently observed effective cosmological constant. Then f(0) = 0 (the
cosmological constant ’disappears’ in flat space-time) and Rν

µ = 0 is always a solution of Eq. (2) in the absence
of matter, but f ′′(0) is negative – flat space-time is unstable. For |R| $ R0, f(R) = R − 2Λ(∞) where the high-
curvature value of the effective cosmological constant is Λ(∞) = λR0/2. The equation for de Sitter solutions having
R = const = R1 = x1R0, x1 > 0 can be written in the form

λ =
x1(1 + x2

1)
n+1

2 ((1 + x2
1)

n+1 − 1 − (n + 1)x2
1)

. (6)

Below, by x1 I will mean the maximal root of Eq. (6). So, instead of specifying λ, one may take any value of x1

and then determine the corresponding value of λ. It follows from the structure of Eq. (6) that x1 < 2λ. Thus, the
effective cosmological constant at the de Sitter solution Λ(R1) = R1/4 < Λ(∞). On the other hand, x1 → 2λ in both
limiting cases x1 fixed, n $ 1 and x1 $ 1, n fixed. In these cases the Universe evolution becomes indistinguishable
from that in the ΛCDM model.

Let us now consider the stability conditions

f ′(R) > 0 , f ′′(R) > 0 , R ≥ R1 . (7)

Note that they are imposed not in the whole space of solutions but only on a trajectory of the evolution of our Universe
from very large and positive R in the past to R = R1 in the infinite future. The quantum meaning of these conditions
(graviton is not a ghost, scalaron is not a tachyon) has already been mentioned in Sec. 1. However, violation of
these conditions in the course of purely classical evolution is undesirable, too. If f ′(R) = 0 for some finite R > R1,
a universe generically becomes strongly anisotropic and inhomogeneous at some finite moment of time [24, 25] (the
same happens to the Einstein gravity + a non-minimally coupled scalar field, preventing Geff from changing sign
[26]). In the point where f ′′(R) = 0, some weak singularity occurs which will be considered elsewhere. In terms of
the conformal equivalence mentioned above, dR/dφ diverges at this point.

It can be shown that it is sufficient to satisfy the conditions (7) for R = R1 and then they will be valid over the
whole interval [R1,∞). Correspondingly, this gives two necessary conditions for parameters of the form (5):

(1 + x2
1)

n+1 > 1 + (2n + 1)x2
1 , x2

1 > 1/(2n + 1) . (8)

To these inequalities, the condition of the stability of the future de Sitter stage has to be added. It follows from
variation of Eq. (4) and reads (since the condition f ′′(R1) > 0 is already assumed to be satisfied) [27]:

f ′(R1) > R1f
′′(R1) . (9)

1

I. FORMULAE

f(R) = R−RHS

c1(R/RHS)n

c2(R/RHS)n + 1
, f(R) = R+

Rn(aRn − b)

1 + cRn
. (1)
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I. FORMULAE

f(R) = R−RHS

c1(R/RHS)n

c2(R/RHS)n + 1
, f(R) = R+

Rn(aRn − b)

1 + cRn
. (1)

3

(
√

3 − 1)/2 < m ≤ 1 [11]. This corresponds to the case
in which R continues to decrease in future, which can
violate the stability condition (4).

A number of f(R) models satisfying the above condi-
tions were considered in Refs. [12, 13]. Some examples
are

(i) f(R) = (Rb − Λ)c (c ≥ 1, bc ≈ 1) , (7)

(ii) f(R) = R − αRn (α > 0, 0 < n < 1) , (8)

which correspond to m(r) = [(1 − c)/c]r + b − 1 and
m(r) = n(1 + r)/r, respectively.

Let us next consider local gravity constraints on f(R)
dark energy models. The LGC are satisfied for M" & 1
[13, 18], where " is a scale at which gravity experiments
are carried out. Using Eqs. (2) and (3), this constraint
is expressed by

m(Rs) '
1

f,Rs

(

"

R−1/2
s

)2

, (9)

where Rs is a curvature measured on the local structure
and is proportional to the energy density ρs of the struc-
ture (Rs ≈ 8πGρs). Using the present cosmological den-
sity ρ0 and the Hubble radius H−1

0 ∼ 1028 cm (in what
follows we use the subscript “0” for present values), the
above constraint is rewritten as

m(Rs) '
ρs

ρ0

(

"

H−1
0

)2

, (10)

where we used f,Rs
∼ 1 and R0 ∼ H2

0 ∼ 8πGρ0. The
r.h.s. of Eq. (10) is very much smaller than unity [13]
because " ' H−1

0 even though ρs is larger than ρ0. In
the case of the Cavendish-type experiments the typical
constraint is m(Rs) ' 10−43, as we will see later.

The above argument shows that in the high-curvature
region (R & R0) the quantity m needs to be negligi-
bly small. Cosmologically this means that during ra-
diation and matter eras the models need to mimic the
ΛCDM model with a high-precision. Note that the mod-
els (i) and (ii) given in Eqs. (7) and (8) behave as
m(r) = C(−r − 1) as r approaches −1. In such cases,
however, LGC are not satisfied unless C is chosen to be
unnaturally small.

Hu and Sawicki [14] proposed an explicit f(R) model
that satisfies both cosmological and local gravity con-
straints. It is given by

f(R) = R − λRc
(R/Rc)2n

(R/Rc)2n + 1
, (11)

where the power 2n is used instead of n. Starobinsky [15]
also proposed another viable model:

f(R) = R − λRc

[

1 −
(

1 +
R2

R2
c

)−n
]

. (12)

In both models n, λ and Rc are positive constants, where
Rc is the order of the present Ricci scalar R0. Since

f(R = 0) = 0 cosmological constant disappears in a flat
spacetime. Thus the origin of dark energy can be re-
garded as the geometrical one.

Let us check the cosmological viability as well as the
stability for such models. In the region R & Rc these
behave as

f(R) ) R − λRc

[

1 −
(

Rc

R

)2n
]

, (13)

r ) −1 − λ
Rc

R
, (14)

m )
2n(2n + 1)

λ2n
(−r − 1)2n+1 . (15)

Thus in this region the models (11) and (12) have the
following property

m(r) = C(−r − 1)p , (16)

where p = 2n + 1 > 1 and C is a positive constant. It
is obvious that, for larger p, m(r) becomes very small as
r → −1 so that the model satisfies LGC. Since dm

dr (r =
−1) = 0 the condition (5) is also satisfied.

Let us next check the conditions (4) and (6). In the
model (11), the de-Sitter point at r = −2 is determined
by the value of λ:

λ =
(1 + x2n

1 )2

x2n−1
1 (2 + 2x2n

1 − 2n)
, (17)

where x1 = R1/Rc. From the stability condition 0 <
m(r = −2) ≤ 1 we obtain

2x4n
1 − (2n − 1)(2n + 4)x2n

1 + (2n − 1)(2n − 2) ≥ 0 .(18)

When n = 1, for example, we have x1 ≥
√

3 and
λ ≥ 8

√
3/9. Under Eq. (18) one can show that the con-

dition (4) is satisfied. This situation is similar to the
Starobinsky’s model (12), see Ref. [15] for details.

We can extend the above two models to the more gen-
eral form

f(R) = R − ξ(R), ξ(0) = 0, ξ(R & Rc) → const. (19)

The conditions (4) translate into

ξ,R < 1 , ξ,RR < 0 , for R ≥ R1 . (20)

In order to satisfy LGC, we require that ξ(R) approaches
a constant rapidly as R grows in the region R & Rc

(such as ξ(R) ) constant − (Rc/R)2n discussed above).
Another model to meet these requirements is

f(R) = R − λRctanh

(

R

Rc

)

, (21)

where λ and Rc are positive constants. A similar model
was proposed by Appleby and Battye [16], although it is
different from (21) in the sense that ξ(R) can be negative
for R < R1. In the region R & Rc the model (21)

W. Hu and I. Sawicki, Phys. Rev. D 76 064004 (2007), arXiv:0705.1158[astro-ph]

S. Nojiri and S.D. Odintsov, Phys. Rev. D 77 026007 (2008), arXiv:0710.1738[hep-th]

S. Tsujikawa, Phys. Rev. D 77 023507 (2008), arXiv:0709.1391[astro-ph]

A. Starobinsky, JETP Lett. 86 157 (2007), arXiv:0706.2041 [astro-ph]
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Cosmological evolution in viable 
F(R)

Using the redshift as the independent variable:
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Cosmological parameters:

Ωm =
ρm
3
κ2H

2
, ΩF (R) =

1

3H2

�
RFR − F

2
− 3HṘFRR − 3H2

FR

�
. (2.6)

Then, the first Friedmann equation (2.4) takes a simple form, with two fluids contributing
to the scale factor dynamics. In addition, the continuity equation ∇µT

µν = 0 for a perfect
fluid with an EoS pm = wmρm yields,

ρ̇m + 3H(1 + wm)ρm = 0 . (2.7)

Hence, for a particular F (R), the corresponding cosmological evolution can be obtained
through equations(2.4), and the continuity equation (2.7).
In absence of any kind of matter, dynamics of the universe are carried out by the F (R)-
component, which may be chosen so that reproduces (or at least contributes) to the early
inflationary phase and the late-time accelerating epoch. To reproduce the whole history of
the universe, the following conditions on the F (R) function have been proposed (see [16]):

i ) Inflation occurs under one of the following conditions:

lim
R→∞

F (R) → −Λi or lim
R→∞

F (R) → αRn
. (2.8)

In the first situation in (2.8), F (R) function behaves as an effective cosmological con-
stant at early times, while the second condition yields also an accelerating expansion
where the scale factor behaves as a(t) ∼ t

m, with m = 2n2+1−3n
2−n (see Ref. [3]).

ii ) In order to reproduce late-time acceleration, we can impose a similar condition on
F (R). In this case, Ricci scalar has a finite value, which is assumed to be the current
one, so that the condition is expressed as

F (R0) = −2R0 F
�(R0) ∼ 0 . (2.9)

This basically means that extra terms in the action behave as an effective cosmological
constant at the present time, p ∼ −ρ. However, as the effective fluid, coming from
extra terms in the action, is not exactly a cosmological constant, the evolution would
be quite different, since the universe may enter in a phantom phase [19], or may produce
oscillations along the cosmological evolution [27]. We will explore the evolution, and
the crossing of the phantom barrier in viable f(R) gravity in next sections.

Hence, under these circumstances, the F (R) term is able to reproduce both accelerating
epochs of the universe evolution. Here we will focus on the study of two models of this
kind of viable gravity, proposed by Hu and Sawicki in Ref. [15], and Nojiri and Odintsov in
Ref. [16], whose actions are given by,

FHS(R) = −RHS
c1(R/RHS)n

c2(R/RHS)n + 1
, FNO(R) =

R
n(aRn − b)

1 + cRn
. (2.10)

Here, {c1, c2, n} are free parameters and RHS = κ2ρ0m according to Ref. [15], while {a, b, c, n}
are free parameters for the second model in(2.10). The first model in(2.10) has been studied
in Ref. [7], where it was proven that the universe evolution goes through two different De
Sitter points, being one of them stable and the other one unstable, which can be identified to
the current accelerated era and to the inflationary epoch, respectively. Similarly, the second
model in(2.10) was studied in Ref. [18], also with the presence of an extra field, and was shown
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EoS parameter w(z)

1. "CDM initial conditions,

The EoS parameter will cross the phantom barrier in the future.
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Figure 1: Evolution of the EoS parameter (12) as a function of the redshift z for the models FHS(R)
and FNO(R). Here we have assumed the initial conditions h(0) = 1 and h�(0) = 0.4, according to (14).

The panel 1a shows the evolution from the past to the future, where the phantom barrier is crossed for

negative redshifts in both models. The panel 1b shows in more detail the range −1 < z < −0.8.
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Figure 2: Evolution of the EoS parameter (12) as a function of the redshift z for the models FHS(R)
and FNO(R) and the initial conditions h(0) = 1 and h�(0) = −0.1. As shown in panel 2a, the EoS

crosses the phantom barrier before z = 0 in both models (as natural due according to the initial

conditions), while it oscillates along the barrier in the future. In more detail, the future evolution is

shown in the Fig. 2b. Both models tend to w = −1 when approaching z = −1.

4. Scalar-tensor representation of f(R) gravity

At this stage, let us consider the equivalent scalar-tensor theory of f(R) gravity (see for
example, [6, 23] and references therein),

S =

�
d4x

√
−g

�
φ R− V (φ) + 2κ2Lm

�
. (15)
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Figure 1: Evolution of the EoS parameter (12) as a function of the redshift z for the models FHS(R)
and FNO(R). Here we have assumed the initial conditions h(0) = 1 and h�(0) = 0.4, according to (14).

The panel 1a shows the evolution from the past to the future, where the phantom barrier is crossed for

negative redshifts in both models. The panel 1b shows in more detail the range −1 < z < −0.8.
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and FNO(R) and the initial conditions h(0) = 1 and h�(0) = −0.1. As shown in panel 2a, the EoS

crosses the phantom barrier before z = 0 in both models (as natural due according to the initial
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Figure 3: Evolution of the deceleration parameter q = −aä/ȧ2 for the models FHS(R) and FNO(R)
in comparison with the ΛCDM model. The panel 3a corresponds to the initial conditions h(0) = 1 and

h�(0) = 0.4, while the panel 3b corresponds to h(0) = 1 and h�(0) = −0.1.
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Figure 4: Evolution of the cosmological parameters {Ωm,ΩF } defined in (5) in the framework of the

HS model, and assuming the initial conditions, h(0) = 1 and h�(0) = 0.4 (Fig. 4a), and h(0) = 1 and

h�(0) = −0.1 (4b). Both plots are very similar, but the panel 4b shows that the cosmological parameter

ΩF decays for 0 < z < 1, and starts to increase again at z ∼ 1, an anomalous behavior.

By varying the action (15) with respect to the scalar field φ, the relation between both

theories is obtained, and the f(R) action (1) is recovered,

R = V �(φ) → φ = φ(R) , ⇒ f(R) = φ(R)R− V (φ(R)) . (16)

While the scalar field and the potential are related to a particular f(R) by,

φ = fR(R) , V (φ(R)) = fR(R) R− f(R) . (17)

Hence, it is straightforward to reconstruct the equivalent scalar-tensor theory (15) for a

particular f(R) action. Moreover, by varying the action (15) with respect to the metric

q = −aä/ȧ2
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Figure 6: Evolution of cosmological parameters {Ωm(z),ΩF (z)} for FNO(R) with n = 1, a = 0.1/H2
0 ,

b = 1, c = 0.05/H2
0 , and assuming initial conditions, h(0) = 1 and h

�(0) = 0.4 (fig. 6a), and h(0) = 1 and
h
�(0) = −0.1 (fig. 6b). In fig. 6b, the transition to the dark energy epoch occurs before than in fig. 6a, a

consequence of the initial conditions.

spect to the redshift for the Hu-Sawicki and Nojiri-Odintsov models respectively for the dif-
ferent initial conditions considered above. Note that the choice of the initial conditions affect
the cosmological evolution for both models, while for the HS model, both cases present the
same evolution for negative redshifts, for positive ones, the evolution is different as shown
in Fig. 5b, where the cosmological parameters seem to oscillate when, z > 0. In the NO
model, when phantom initial conditions are assumed, ΩF tends to dominate completely the
universe, while for positive redshifts, it becomes negative, fig. 6b.

Note that, as shown in figures 1-4, viable modified gravities (2.10) produce some oscil-
lations along the cosmological evolution, a fact pointed out before for this kind of models
in Ref. [27]. In general, we have shown that the transition to the phantom epoch occurs.
Moreover, the election of phantom conditions at z = 0 gives an anomalous behavior of the
cosmological parameters for both models when z > 0.

4 Scalar-tensor representation of f(R) gravity

It is well known that f(R) gravity is equivalent to a kind of Brans-Dicke theory with a null
kinetic term, and a scalar potential, (see for example, [6, 23] and references therein),

S =

�
d4x

√
−g

�
φ R− V (φ) + 2κ2Lm

�
. (4.1)

By varying the action with respect to the scalar field φ, the relation between both theories
is obtained, and f(R) action(2.1) is recovered,

R = V �(φ) → φ = φ(R) , ⇒ f(R) = φ(R)R− V (φ(R)) . (4.2)

While the scalar field and the potential are related with the particular f(R) action by,

φ = fR(R) , V (φ(R)) = fR(R) R− f(R) . (4.3)
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Then, by a particular f(R) action, we can reconstruct its equivalent scalar-tensor theory(4.1),
so that we can study the viable models studied above by analyzing their scalar-tensor coun-
terpart. Moreover, by varying the action(4.1) with respect to the metric gµν , field equations
are obtained,

Rµν −
1

2
gµνR =

κ2

φ
T
(m)
µν +

1

φ
(∇µ∇νφ− gµν�φ)− 1

2
gµνV (φ) ,

3�φ = κ2T (m) + φ
dV (φ)

dφ
− 2V (φ) , (4.4)

where the second equation is the trace of the field equations in(4.4). Hence, for a flat FLRW
metric (2.3), the Friedmann equations yield,

3H2 =
1

φ

�
κ2ρm − 3Hφ̇+

1

2
V (φ)

�
,

− 3H2 − 2Ḣ =
1

φ

�
κ2pm + φ̈+ 2Hφ̇− 1

2
V (φ)

�
. (4.5)

while the trace equation in(4.4) is given by,

3φ̈ = κ2(ρm − pm)− φV � + 2V − 9Hφ̇ . (4.6)

Let’s reconstruct the corresponding scalar-tensor theory for the particular models considered
in the previous section. By the expressions(4.3), the corresponding relation φ(R) for the
models(2.10) are given by,

φHS = 1+
c1c2R

RHS

�
1 + c2R

RHS

�2 +
c1

1 + c2R
RHS

, φNO = 1− cR(aR− b)

(1 + cR)2
+

aR

1 + cR
+
aR− b

1 + cR
, (4.7)

where we have assumed a power of n = 1 for both models(2.10). Then, the scalar poten-
tials(4.3) yield,

VHS(φ) =
1 + c1 − φ± 2 c2

�
c1 (1− φ)

c2
RHS ,

VNO(φ) =
2 a+ c (1 + b− φ)± 2

�
(a+ b c) (a+ c− φ)

c2
. (4.8)

Hence, the scalar-tensor representation for both models is not uniquely defined, but the
potentials exhibit two branches, which in principle do not affect the cosmological evolution,
but it may influence the behavior of the phase space. In addition, both models introduce
a boundary condition on the value of the scalar field, being φ < 1 for the HS model, and
φ < a + c/c for the NO model, a limit where both branches of the potentials converge, as
can be seen in Fig. 7.
Moreover, the evolution of the scalar field as a function of the redshift, φ(z) = fR(R(z)),

is the same regardless of the sign in the potentials(4.8), as shown in Fig. 8. Note that there
is a direct correlation between the behavior of the scalar field and the evolution of the EoS
parameter as can be shown comparing figs. 1 and 3 with fig. 8. For the HS model, the
EoS parameter (Fig. 1)presents some oscillations, specially for negative redshifts around the
phantom barrier, while the evolution of the scalar field also oscillates according to Fig. 8a. In
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Trace  equation,

In vacuum, the phase space can be described by, 
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Figure 7: Evolution of the scalar field φ(z) for the HS model (7a) and the NO model (7b). In both
cases, the initial conditions are: h(0) = 1, and h�(0) = 3Ω0

m/2.

For simplicity, we assume the FLRW equations (19) in vacuum, so by combining the
equations (19)-(20), the following system results,

Ḣ = −2H2 +
1

6
V

�(φ) , φ̇ =
1

3H

�
−3H2φ+

1

2
V (φ)

�
. (25)

Note that this is a dynamical system whose critical points are given by Ḣ = φ̇ = 0, which
corresponds to de Sitter solutions, as mentioned in the previous sections as a feature of
f(R) gravity. Then, the critical points are the solutions of the algebraic equation,

φcV
�(φc)− 2V (φc) = 0 , Hc =

�
V �(φc)

12
. (26)

In addition, by combining both equations in (25), the equation of the phase space is
obtained,

dH

dφ
=

V
�(φ)
6 − 2H2

V (φ)
6H −Hφ

. (27)

This equation describes the phase space for a particular scalar potential, and provides
useful information about the behavior and the stability of a particular model. At this
step, let us analyze the phase space in vacuum for the f(R) models (8) by assuming the
negative branch of the scalar potential V−(φ) given in (22). Recall that for an illustrative
propose, here c1 = 2, c2 = 1, and a = 0.1/H2

0 , b = 1, c = 0.05/H2
0 are set for the HS

and the NO model respectively. Then, it is straightforward to find that the only real
critical points (26) are given by,

HS model: φc = 0.82 , Hc = 0.74 ,

NO model: φc = −5 × 10−5
, Hc ∼ 0 ,

(28)

DSG, Class.Quant.Grav. 30 095008 (2013)
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f(r) gravity
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Then, by a particular f(R) action, we can reconstruct its equivalent scalar-tensor theory(4.1),
so that we can study the viable models studied above by analyzing their scalar-tensor coun-
terpart. Moreover, by varying the action(4.1) with respect to the metric gµν , field equations
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where the second equation is the trace of the field equations in(4.4). Hence, for a flat FLRW
metric (2.3), the Friedmann equations yield,
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while the trace equation in(4.4) is given by,

3φ̈ = κ2(ρm − pm)− φV � + 2V − 9Hφ̇ . (4.6)

Let’s reconstruct the corresponding scalar-tensor theory for the particular models considered
in the previous section. By the expressions(4.3), the corresponding relation φ(R) for the
models(2.10) are given by,
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c1c2R

RHS

�
1 + c2R

RHS
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(1 + cR)2
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aR

1 + cR
+
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, (4.7)

where we have assumed a power of n = 1 for both models(2.10). Then, the scalar poten-
tials(4.3) yield,

VHS(φ) =
1 + c1 − φ± 2 c2

�
c1 (1− φ)

c2
RHS ,

VNO(φ) =
2 a+ c (1 + b− φ)± 2

�
(a+ b c) (a+ c− φ)

c2
. (4.8)

Hence, the scalar-tensor representation for both models is not uniquely defined, but the
potentials exhibit two branches, which in principle do not affect the cosmological evolution,
but it may influence the behavior of the phase space. In addition, both models introduce
a boundary condition on the value of the scalar field, being φ < 1 for the HS model, and
φ < a + c/c for the NO model, a limit where both branches of the potentials converge, as
can be seen in Fig. 7.
Moreover, the evolution of the scalar field as a function of the redshift, φ(z) = fR(R(z)),

is the same regardless of the sign in the potentials(4.8), as shown in Fig. 8. Note that there
is a direct correlation between the behavior of the scalar field and the evolution of the EoS
parameter as can be shown comparing figs. 1 and 3 with fig. 8. For the HS model, the
EoS parameter (Fig. 1)presents some oscillations, specially for negative redshifts around the
phantom barrier, while the evolution of the scalar field also oscillates according to Fig. 8a. In
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Figure 7: Scalar potentials V (φ) in terms of H2
0 , of the HS model with n = 1, c1 = 2 , c2 = 1 (figure 7a),

and of the NO model with n = 1, a = 0.1/H2
0 , b = 1, c = 0.05/H2

0 , fig. 7b. Both potentials are not uniquely
defined, where each branch behaves very different, converging to the boundary of the scalar field φ.
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Figure 8: Evolution of the scalar field φ(z) for the HS model with n = 1, c1 = 2 , c2 = 1 (a), and for
the NO model (b) with n = 1, a = 0.1/H2

0 , b = 1, c = 0.05/H2
0 . In both cases, the initial conditions are:

h(0) = 1, and h
�(0) = 3Ω0

m/2. For each example, we can easily see the correlation between the evolution of
the EoS parameter in Figs. 1 and 3, and the evolution of the scalar field for each model respectively

the NO model, the linear behavior of the EoS parameter observed in Fig. 3 is also translated
in a linear evolution of the scalar field with respect to the redshift, see fig. 8b. Let us now

analyze the phase space {H,φ} for this kind of viable models in vacuum, where both branches

of the scalar potentials are considered. For simplicity, we assume vacuum FLRW equations,

so that by combining equations(4.5)-(4.6), we get,

Ḣ = −2H
2
+

1

6
V

�
(φ) , φ̇ =

1

3H

�
−3H

2φ+
1

2
V (φ)

�
. (4.9)

– 11 –
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VNO(φ) =
2 a+ c (1 + b− φ)± 2

�
(a+ b c) (a+ c− φ)

c2
. (22)

Hence, the scalar-tensor representation for both models is not uniquely defined, but the
potentials exhibit two branches due to the particular expressions of the f(R) action
considered here. In addition, both models introduce a boundary condition on the value
of the scalar field, being φ < 1 in the HS model, and φ < a + c/c in the NO model, a
limit where both branches of the scalar potentials converge, as shown in Fig. 6.
Moreover, the evolution of the scalar field, φ(z) = fR(R(z)), shown in Fig. 7 is directly
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Figure 6: Scalar potentials V (φ) in terms of H2
0 , for the HS model with n = 1, c1 = 2 , c2 = 1 (panel

6a), and the NO model where n = 1, a = 0.1/H2
0 , b = 1, c = 0.05/H2

0 , Fig. 6b. Both potentials are
not uniquely defined, but both branches converge to the same boundary of the scalar field.

correlated with the behavior of the EoS parameter for negative redshifts, since the
effective EoS parameter can be expressed now in terms of the scalar field as follows,

weff = −1− φ̈−Hφ̇+ κ2ρm(1 + wm)
1
2V (φ)− 3Hφ̇+ κ2ρm

. (23)

At negative redshifts, the dust matter density is negligible, ρm ∝ (1 + z)3 ∼ 0, and the
scalar field dominates, whereas the EoS yields,

weff ∼ −1− φ̈−Hφ̇
1
2V (φ)− 3Hφ̇

. (24)

Then, the behavior of the EoS parameter for small and negative redshifts is a direct
consequence of the scalar field evolution, as observed by comparing Figs. 1 and 7. In
the HS model, the oscillations of the scalar field, shown in Fig. 7a are also observed in
the evolution of the EoS parameter in Fig. 1, whereas the EoS parameter in the NO
model describes a smooth curve in Fig. 1 that corresponds with the one of the scalar
field in Fig. 7b.

Let us now analyze the phase space {H,φ} in this kind of viable f(R) gravity.

DSG, Class.Quant.Grav. 30 095008 (2013)
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Phase space

This branch of the potential makes the scalar field to tend to the boundary, where a 
sudden singularity occurs.
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Figure 9: Phase space H(φ) for the HS model (panel 9a), where different initial conditions are
considered. The right panel corresponds to the NO model. For both models, the potential V+(φ) has
been assumed. As observed, all the curves in both models reach the bounding of the scalar field, leading
a sudden singularity.

(for a review see Ref. [35]). Nevertheless, and except for the Einstein-Strauss model
that imposes very restricted conditions, the expansion of a FLRW background seems to
affect local systems (see Ref. [36]).

The consequences of such scenarios would lead to the modification of the metrics
that characterizes such bound systems, where the cosmological expansion would play
an important role. Here we are interested to study these scenarios in the viable f(R)

theories considered throughout this manuscript. Firstly, we should characterize, at least
qualitatively, the strength of the inertial force induced by the cosmological expansion in
order to be compared with those forces of a bound system. In this sense, the force that a
body of mass m may feel due to the cosmological expansion by the relative acceleration
between two points separated a comoving distance r can be expressed as,

Fcosm = m r

�
ä

a

�
= m r

�
H

2 + Ḣ

�
. (29)

Then, according to the analysis of the models (8) of the previous sections, the Hubble
parameter does not diverge at infinity since the evolution goes asymptotically to a stable
de Sitter solution. Only the scalar potential V+ induces a sudden singularity, but this
is not the case in the presence of matter. Then, a Little Rip can not occur, so let
us consider the possibility of a Pseudo Rip scenario, by analyzing the evolution of the
inertial force (29) in comparison with the bounding force of a particular system. For an
illustrative purpose, the Newtonian force of the coupling between the Sun and a body
of mass m is considered,

FN = G
mMSun

r2
. (30)

1

I. FORMULAE

f(R) = R−RHS

c1(R/RHS)n

c2(R/RHS)n + 1
, f(R) = R+

R
n(aRn − b)

1 + cRn
. (1)

SEH =

�
d
4
x
√
−g

�
R+ 2κ2Lm

�
→ S =

�
d
4
x
√
−g

�
f(R) + 2κ2Lm

�
. (2)

T
(m)
µν = − 2√

−g

δ (
√
−gLm)

δgµν
(3)

n = 1 , c1 = 2 , c2 = 1 (4)

H(z = 0) = H0 = 100h km s
−1

Mpc
−1

, h = 0.71± 0.03 (5)

H
�(z) =

κ2

2

ρm
H0 (1 + z)h(z)

, → H
�(0) =

κ2

2H0
ρ0
m

=
3

2
Ω0

m
. (6)

H
�(0) � 0 (7)

Ωm(z) , Ωf(R)(z) (8)

V+(φ) V−(φ) (9)
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Figure 8: Phase space of the HS model (panel 8a), and the NO model (8b). In both models, the
potential V−(φ) has been assumed. As suggested by the previous results, the HU model presents an
asymptotically stable focus, whereas the NO model exhibits an asymptotically stable node.

Then, by analyzing the dynamical system (25), it is straightforward to find out
that the critical point of the HS model corresponds to an asymptotically stable focus,
as shown in Fig 8a, whereas the critical point of the NO model is an asymptotic stable
node, Fig. 8b. Fig. 8 corresponds to the representation of the phase space of both
models, where the black and gray curves correspond to the ΛCDM initial conditions
and the phantom ones assumed above respectively. Moreover, other initial conditions
are taken in order to illustrate the diagram.
As observed in Fig. 8a, the HS model owns an stable de Sitter solution, which agrees with
the results obtained in the previous section, whereas the NO model presents a stable
point close to the origin, where the Hubble parameter becomes null. Nevertheless,
note that the coefficients of the dynamical system of the NO model turns out complex
for an specific value, so the Hubble parameter reach a limit, and most of the curves
do not reach the origin but end at a finite non null value of the Hubble parameter,
which leads asymptotically to a stable dS solution, that agrees with the results of
the previous section. Hence, both models predict an asymptotic stable cosmological
evolution. Nevertheless, in the next section, the other branch of the scalar potential
is studied, which corresponds to another solution (in vacuum) of these f(R) models,
where the occurrence of a future singularity can not be avoided.

5. Future singularities, Little Rip and Pseudo-Rip in viable f(R) gravity

In recent years, the study of future singularities has become a major task since a lot of
cosmological models, capable of describing a realistic cosmological evolution satisfying
the observational constraints, lead to a phantom phase, where w < −1, and may content
some type of future singularity (see Refs. [8]). A classification of future singularities was
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=
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H
�(0) � 0 (7)
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V+(φ) V−(φ) (9)
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Figure 9: Phase space H(φ) for the HS model (panel 9a), where different initial conditions are
considered. The right panel corresponds to the NO model. For both models, the potential V+(φ) has
been assumed. As observed, all the curves in both models reach the bounding of the scalar field, leading
a sudden singularity.

that imposes very restricted conditions, the expansion of a FLRW background seems to
affect local systems (see Ref. [36]).

The consequences of such scenarios would lead to the modification of the metrics
that characterizes such bound systems, where the cosmological expansion would play
an important role. Here we are interested to study these scenarios in the viable f(R)

theories considered throughout this manuscript. Firstly, we should characterize, at least
qualitatively, the strength of the inertial force induced by the cosmological expansion in
order to be compared with those forces of a bound system. In this sense, the force that a
body of mass m may feel due to the cosmological expansion by the relative acceleration
between two points separated a comoving distance r can be expressed as,

Fcosm = m r

�
ä

a

�
= m r

�
H

2 + Ḣ

�
. (29)

Then, according to the analysis of the models (8) of the previous sections, the Hubble
parameter does not diverge at infinity since the evolution goes asymptotically to a stable
de Sitter solution. Only the scalar potential V+ induces a sudden singularity, but this
is not the case in the presence of matter. Then, a Little Rip can not occur, so let
us consider the possibility of a Pseudo Rip scenario, by analyzing the evolution of the
inertial force (29) in comparison with the bounding force of a particular system. For an
illustrative purpose, the Newtonian force of the coupling between the Sun and a body
of mass m is considered,

FN = G
mMSun

r2
. (30)

where MSun = 1.9 1030 kg is the mass of the Sun, and r is the distance between the
Sun and the body of mass m. In both cases Fi = |�Fi| is assumed, since both forces have

The scalar field reaches its boundary, where a sudden singularity occurs.

DSG, Class.Quant.Grav. 30 095008 (2013)
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Figure 8: Phase space of the HS model (panel 8a), and the NO model (8b). In both models, the
potential V−(φ) has been assumed. As suggested by the previous results, the HU model presents an
asymptotically stable focus, whereas the NO model exhibits an asymptotically stable node.

Then, by analyzing the dynamical system (25), it is straightforward to find out
that the critical point of the HS model corresponds to an asymptotically stable focus,
as shown in Fig 8a, whereas the critical point of the NO model is an asymptotic stable
node, Fig. 8b. Fig. 8 corresponds to the representation of the phase space of both
models, where the black and gray curves correspond to the ΛCDM initial conditions
and the phantom ones assumed above respectively. Moreover, other initial conditions
are taken in order to illustrate the diagram.
As observed in Fig. 8a, the HS model owns an stable de Sitter solution, which agrees with
the results obtained in the previous section, whereas the NO model presents a stable
point close to the origin, where the Hubble parameter becomes null. Nevertheless,
note that the coefficients of the dynamical system of the NO model turns out complex
for an specific value, so the Hubble parameter reach a limit, and most of the curves
do not reach the origin but end at a finite non null value of the Hubble parameter,
which leads asymptotically to a stable dS solution, that agrees with the results of
the previous section. Hence, both models predict an asymptotic stable cosmological
evolution. Nevertheless, in the next section, the other branch of the scalar potential
is studied, which corresponds to another solution (in vacuum) of these f(R) models,
where the occurrence of a future singularity can not be avoided.

5. Future singularities, Little Rip and Pseudo-Rip in viable f(R) gravity

In recent years, the study of future singularities has become a major task since a lot of
cosmological models, capable of describing a realistic cosmological evolution satisfying
the observational constraints, lead to a phantom phase, where w < −1, and may content
some type of future singularity (see Refs. [8]). A classification of future singularities was

Nojiri-Odintsov model

The Hubble parameter tends to a an asymptotically stable dS point.

DSG, Class.Quant.Grav. 30 095008 (2013)



The Little Rip

As the universe expands, the relative acceleration between two points separated by a comoving 
distance l is affected by the acceleration of the expansion. An observer located at a comoving 
distance l away from a mass m will measure an inertial force on the mass of

2

II. INERTIAL FORCE INTERPRETATION OF THE LITTLE RIP

As the universe expands, the relative acceleration between two points separated by a comoving distance l is given
by lä/a, where a is the scale factor. An observer a comoving distance l away from a mass m will measure an inertial
force on the mass of

Finer = mlä/a = ml
(

Ḣ +H2
)

. (1)

Let us assume the two particles are bound by a constant force F0. If Finer is positive and greater than F0, the two
particles become unbound. This is the “rip” produced by the accelerating expansion. Note that equation (1) shows
that a rip always occurs when either H diverges or Ḣ diverges (assuming Ḣ > 0). The first case corresponds to a
“big rip” [13], while if H is finite, but Ḣ diverges with Ḣ > 0, we have a Type II or “sudden future” singularity [5–7],
which also leads to a rip. However, as noted in Ref. [11], it is possible for H , and therefore, Finer, to increase without
bound and yet not produce a future singularity at a finite time; this is the little rip. Both the big rip and little rip
are characterized by Finer → ∞; the difference is that Finer → ∞ occurs at a finite time for a big rip and as t → ∞
for the little rip.

An interesting case occurs when H is finite and Ḣ diverges but is negative. In this case, even though the universe
is expanding, all structures are crushed rather than ripped. An example is given by

H = H0 +H1 (tc − t)α . (2)

Here H0 and H1 are positive constants and α is a constant with 0 < α < 1.
By using the FRW equations

3

κ2
H2 = ρ , −

1

κ2

(

2Ḣ + 3H2
)

= p , (3)

we may rewrite (1) in the following form:

Finer = −
mlκ2

6
(ρ+ 3p) . (4)

Here κ2 = 8πG and G is Newton’s gravitational constant. Not surprisingly, we see that the inertial force is sourced
by the quantity ρ+ 3p. Then if we consider the general equation of state,

p = −ρ+ f(ρ) , (5)

we find

Finer =
mlκ2

6
(2ρ− 3f(ρ)) . (6)

As noted in Ref. [11], when w → −1 but w < −1, a rip can occur without a singularity. If we ignore the contribution
from matter, the equation of state (EoS) parameter w of the dark energy can be expressed in terms of the Hubble
rate H as

w = −1−
2Ḣ

3H2
. (7)

Then if Ḣ > 0, we find w < −1.
Now consider the following example:

H = H0e
λt . (8)

Here H0 and λ are positive constants. Eq. (8) tells us that there is no curvature singularity for finite t. By using
Eq. (7), we find

w = −1−
2λ

3H0
e−λt , (9)

and therefore w < −1 and w → −1 when t → +∞, and w is always less than −1 when Ḣ is positive. From Eq. (1),
we have

Finer = ml
(

λH0e
λt +H2

0e
2λt

)

, (10)

If the two particles are bounded by a constant force, when
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H(t) = H0(cos ω t)2 + 2ω(2 sin ω t− tan ω t) (27)
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− 2(1−3λ)

1−3λ+3µ (30)

S =

�
d
4
x
√
−gβ(φ)Lm (31)

Finer > F0 (32)

3

The binding system is broken and a 
“Rip”of the system occurs.

This usually occurs for singularities of the type of Big Rip (H diverges) and Type II singularities (H’ 
diverges).

However, a break of the bounded system may occur with no future singularity, which is called the 
Little Rip.

It could occur even in cyclic cosmologies, where the Hubble parameter presents a bound, but whose 
strength during the accelerating phase may be strong enough to make a Little Rip to occur.

P. Frampton, K. Ludwick, R. Scherrer,  Phys. Rev. D 84: 063003,2011, arXiv:1106.4996
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study of cosmological models which are able to reproduce super-accelerated phase in the context of modified gravity.
In this case, the corresponding effective EoS parameter (28) crosses the phantom barrier, that is wF (R) < −1. It is
well-known that cosmological phantom models usually contain the so-called big rip singularity [10]. In the case of
the big rip singularity, the phantom energy-density and the scale factor diverges in a finite future. One of the most
surprising consequences of the big rip is the dissolution of bounded systems, as the Solar System and atoms before
the singularity (see Ref. [10, 11]).

In this section, we are interesting to reconstruct F (R) gravity which is able to reproduce a phantom behavior, being
free of future singularity. Nevertheless, such singularity free or little rip cosmology (see Refs. [5, 12]) also leads to
dissolution of bound structures. Let us recall the first FRW equation in F (R),

3

κ2
H

2(t) = ρF (R)(t) , (43)

where the energy-density is defined in (27). By definition, a big rip singularity occurs in a finite time, usually denoted
by ts, when the scale factor a(t) and the energy-density diverges. So in order to avoid a big rip singularity, ρF (R)(t)
must remain positive and finite for all t. Looking at the expression for ρF (R)(t) in (27), it seems complicated to obtain
a general condition on the form of F (R), but a natural condition (not sufficient) seems F

�(R) > 0 for all R in order
to avoid divergences. On the other hand, in the absence of matter, the EoS parameter (28) can be rewritten as,

wF (R) = −1− 2Ḣ

3H2
. (44)

Hence, for a super-accelerated expansion, the Hubble parameter is required to be an increasing function of time.
Looking at some of the models reconstructed in the previous sections, we can see that the Hubble parameter (25)
is a periodic function that reproduces a cyclic Universe. From the effective EoS parameter (41), it is clear that this
model exhibits periods of super-accelerating expansion and it does not contain any future singularity. To find out
if the model (25) may lead to a little rip, one has to determine the duration of each cycle and the strength of the
effective repulsive force reproduced by the F (R) terms and compare with the binding forces of coupled systems (as
for example the Solar System). However, to ensure that a little rip is reproduced, one has to study models of eternal
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3R0. Hence, we have reconstructed F (R) model which is able to

reproduce a super-accelerated (eternal) phase, which does not lead to a future singularity. Note that the action (48)
turns out to be the Einstein-Hilbert action plus some corrections for small values of the Ricci curvature R, where the
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3H2
. (44)

Hence, for a super-accelerated expansion, the Hubble parameter is required to be an increasing function of time.
Looking at some of the models reconstructed in the previous sections, we can see that the Hubble parameter (25)
is a periodic function that reproduces a cyclic Universe. From the effective EoS parameter (41), it is clear that this
model exhibits periods of super-accelerating expansion and it does not contain any future singularity. To find out
if the model (25) may lead to a little rip, one has to determine the duration of each cycle and the strength of the
effective repulsive force reproduced by the F (R) terms and compare with the binding forces of coupled systems (as
for example the Solar System). However, to ensure that a little rip is reproduced, one has to study models of eternal
acceleration but free of future singularities, which may have a stronger growth in time than those models containing
big rip singularities. Let us use the reconstruction technique using Eqs. (12-21). As an example, we consider the
function,

U(φ) = e−βeαφ

, (45)

where α and β are constants. Then, by the expression (21), the Hubble parameter and the scale factor yield,

H(t) = h0e
αt + h1 , → a(t) = a0e

4βeαt+6αt
. (46)

where h0 = 4αβ and h1 = 6α. It is straightforward to see that the function (46) describes a Universe, where for small
times t � α, the Hubble parameter can be approximated as a constant, reproducing a de Sitter solution, as in the
case of ΛCDM model. For large times, the Universe ends in an eternal phantom phase, where the EoS parameter
wF (R) < −1, but without big rip singularity. Nevertheless, a little rip (dissolution of bound structures) might occur
in a finite time, similarly to the model presented in Ref. [5], as it is pointed out below. The functions P (φ) and Q(φ)
can be easily reconstructed by the expressions (15) and (20),

P (φ) = e4βe
αφ

, Q(φ) = −6α2(3 + 4βeαφ)(3 + 8βeαφ)e4βe
αφ

. (47)

The F (R) action that reproduces the solution (46) can be calculated by inverting the expression of the Ricci scalar
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Here the couplings κi are constants depending on C1,2. Hence, for small values of the Ricci scalar the action reduces
to the action for General Relativity plus power-law curvature corrections, as R

2, which is known recipe to cure the
singularities and which has a viable behavior ([13]). Hence, the action (48) represents a viable model where GR can
be recovered while the curvature scalar corrections remain small. It is important that such additional corrections
become relevant close to the little rip evolution. In order to estimate the time for the little rip induced dissolution of
bound structures in a naive way, one might compare the energy-density of a bound system as the Solar System with
the density ρF (R). For the model (46), such density can be approximated for large times by

ρF (R) = ρ0e
2αt

, (50)

where ρ0 is a constant that can be set by imposing that the current value of the energy-density is ρF (R)(t0) =
3
κ2H

2
0 ∼

10−47 GeV4, where the age of the Universe is taken to be t0 ∼ 13.73Gyrs, according to Ref. [14]. One can set the time
of the little rip dissolution occurrence when the gravitational coupling of the Sun-Earth system is broken due to the
cosmological expansion. By assuming a mean density of the Sun-Earth system given by ρ⊙−⊕ = 0.594×10−3 kg/m3 ∼
10−21 GeV4, the time for the little rip dissolution of bound structures is,

tLR = 13.73Gyrs +
29.93

α
. (51)

Hence, depending on the parameter α, the appearance of the little rip may last shorter or longer. For example, when
α = 10−1 Gyrs−1, the little rip occurs at the Universe age of tLR = 313.03Gyrs, while for α ≥ 1Gyrs−1, the time for
the decoupling will be much shorter.

A lot of models can be reconstructed in frames of F (R) gravity which are able to reproduce a super-accelerating
phase free of singularities. Let us consider, for example, a Hubble parameter that reproduces a phantom Universe
without big rip [7],

H
2 =

H
2
0

4
(t− t0)

2 = H0N +H1 . (52)

Here we have introduced the number of e-foldings N = ln a
a0

instead of the cosmological time t. For the Universe
described by the function (52), the effective EoS parameter is less than −1, so it also describes a phantom evolution
but free of future singularities. By using the reconstruction technique from Ref. [7], the action that reproduces the
above solution is given by,

F (R) = K

�
−2,−1

2
;
R− 3H0

12H0

�
, (53)

where K(a, b, x) is the Kummers serie. In this model, the energy-density is given by,

ρF (R) = ρ0(t− t0)
2
, (54)

where t0 = 0 as the origin of the Universe evolution. Then, by adjusting the value for ρ0 with the present value of
the energy-density as in the above model, the little rip occurs when the Universe age is t = 137.3× 1012 Gyrs, which
clearly grows much slower than for above model.

Hence, we have shown here that F (R) gravity is able to reproduce successfully a phantom scenario free of future
singularity, where the little rip occurs at the time which depends completely on the expansion growth rate of the
model.

We are now interested to explore the corresponding picture in the Einstein frame for those solutions describing
a little rip in F (R) gravity. In order to reconstruct the action in the Einstein frame, one has to use a conformal
transformation that removes the strong coupling in the action (12),

gEµν = Ω2
gµν , where Ω2 = P (φ) , (55)

where the subscript E stands for Einstein frame. A quintessence-like action results in the Einstein frame

SE =

�
d
4
x
√
−gE

�
RE − 1

2
ω(φ)∂µφ∂

µφ− U(φ)

�
, (56)

where

ω(φ) =
12

P (φ)

�
d
�

P (φ)

dφ

�2

, U(φ) =
Q(φ)

P 2(φ)
, (57)
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R ∼






12h2
0

(ts−t)2β
for β > 1

12h2
0+6h0

(ts−t)2 for β = 1
6βh0

(ts−t)β+1 for β < 1

. (19)

f(R̃) ∝ R̃
n

n = 2 (20)

−3n

�
d
2

dt2
+ 3H

d

dt

�
R

n−1 ∼ (2− n)Rn (21)

n = 2 free of singularities (22)

n =
1

2
+

3µ

2(1− 3λ+ 3µ)
(23)

R
2
f̃(R) (24)

φ = t , H = g
�(φ) = g

�(t) (25)

P (φ) = P0(cos ωφ)4 (26)

H(t) = H0(cos ω t)2 + 2ω(2 sin ω t− tan ω t) (27)

S =
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dtd
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tan(ωt)

�
1− 2µ
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[sin(ωt)]2

�
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P (φ) = P0 (cos(ωφ))
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d
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√
−gβ(φ)Lm (31)

Finer > F0 (32)

ρF (R)(t0) =
3

κ2
H

2
0 ∼ 10−47GeV4 (33)

3

Hubble parameter

Action

One can set the time of the little rip dissolution occurrence when the gravitational coupling of the 
Sun-Earth system is broken due to the cosmological expansion by assuming a density for the f(R) 
terms adjusted with the dark energy density nowadays,

where

Time for the Little Rip
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Little Rip in viable f(R) gravity

singularity for the viable models studied above. In addition, type IV singularity is not com-

pletely excluded, but this kind of singularity, that affects to higher derivatives of the Hubble

parameter, may not have any physical consequence, at least observationally as pointed out

in Ref. [10], so its importance in comparison with the others is lower.

Nevertheless, the absence of future singularities for a particular model is not enough to

avoid some critical consequences as the so-called Little Rip. The Little Rip is a postulated

phase of the universe evolution Ref. [24], when a very strong accelerating expansion would

lead to break some bounded systems, as the Solar System or the galaxies, but where all

physical magnitudes remain finite (see also Ref. [25]). This special scenario has been also

explored in modified gravity, where the occurrence of this scenario seems very possible for

some particular models (see Refs. [26]). Here we are interested to study the possibility of a

Little Rip in viable f(R) theories, in particular in the models studied in previous sections.

Firstly, we should characterized in some way the strength of the force of the cosmological

expansion in order to compare with those forces of a bounded system, as for example the

newtonian force in Solar System. In this sense, we may write the force that a body of mass

m may feel due to the cosmological expansion by the relative acceleration between two points

separated a comoving distance r,

Fcosm = m r

�
ä

a

�
= m r

�
H

2
+ Ḣ

�
. (5.1)

Then, we may compare this force with the bounding force of a particular system. For example,

in the case of the Solar system, the force of the coupling between Sun and a body of mass m

can be characterized by the Newtonian law,

FN = G
mM⊙
r2

. (5.2)

where M⊙ = 1.9 10
30

kg is the mass of the Sun, and r is the distance between the Sun

and the body m. Here, in both cases it is assumed that Fi = |�Fi|, as both forces have radial

directions, but opposite sign. Hence, we may compare both quantities along the cosmological

evolution,

Fcosm

FN
=

r
3

G M⊙
H

2
0

�
h(z)

2 − (1 + z)h(z) h
�
(z)

�
, (5.3)

where recall that we defined H(z) = H0 h(z) in section 3, where H0 = 100h km s
−1

Mpc
−1

with h = 0.71 ± 0.03. Let’s compare both forces for the Earth-Sun system, where r =

149.6× 10
9
m is the Earth-Sun distance, at the present time, z = 0,

Fcosm

FN
= 1.4× 10

−22
�
h(0)

2 − h(0)h
�
(0)

�
, (5.4)

Then, by assuming the initial conditions from section 3, h(0) = 1 and a) h
�
(0) =

3
2Ω

(0)
m , and

b) h
�
(0) = −0.1,

(i)
Fcosm

FN
∼ 0.82× 10

−22
, (ii)

Fcosm

FN
∼ 1.95× 10

−22
. (5.5)

Hence, both values are too small to produce any kind of instability on the orbits of the
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where MSun = 1.9 1030 kg is the mass of the Sun, and r is the distance between the
Sun and the body of mass m. In both cases Fi = |�Fi| is assumed, since both forces have
radial directions, but opposite sign. Hence, both quantities can be compared along the
cosmological evolution,

Fcosm

FN
=

r
3

G MSun
H

2
0

�
h(z)2 − (1 + z)h(z) h�(z)

�
, (31)

where recall that H(z) = H0 h(z), where H0 = 100h km s
−1

Mpc
−1 with h = 0.71±0.03.

For the case of the Earth-Sun system, r = 149.6 × 109 m, the ratio (31) yields
Fcosm/FN = 1.4×10−22 [h(0)2 − h(0)h�(0)] and by considering the same initial conditions
of the previous sections, h(0) = 1 and a) h�(0) = 3

2Ω
(0)
m , and b) h�(0) = −0.1, the ratio

of both forces at z = 0 is given by

(i)
Fcosm

FN
∼ 0.82× 10−22

, (ii)
Fcosm

FN
∼ 1.95× 10−22

. (32)
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Figure 10: Evolution of the ratio Fcosm
FN

for the Earth-Sun system for the HS and NO models. Here
we assume h(0) = 1 and: Panel (a) h�(0) = 3

2Ω
(0)
m , Panel(b) h�(0) = −0.1.

Hence, both values are too small to produce any dissociation of the Solar System, and
in particular of the Earth orbit. In addition, the future cosmological evolution does
not seem to affect significantly to the Earth-Sun system whatever the f(R) model is as-
sumed, and independently of the initial conditions imposed at z = 0 as shown in Fig. 10.
In the HS model the ratio (31) behaves as an damped oscillator, and the amplitude is
too small to affect the Newtonian force between the Earth and the Sun. In the NO
model, the expansion force reaches its maximum at positive redshifts in both figures,
and decreases when the universe approximates to z = −1.

Hence, the viable f(R) models considered here do not seem to affect bound systems,
and the Pseudo-Rip does not occur.

DSG, Class.Quant.Grav. 30 095008 (2013)



Testing F(R) gravity with Sne Ia 
data 

A simple model

Viability conditions

f(R) = a

�
R

R0

�
+ b

�
R

R0

�n

Fixed point: matter dominated epoch

To ensure the occurrence of a matter dominated epoch at high redshifts: 0.75 < n < 1.347

fRR > 0 →
�

b > 0 and n > 1 or
b < 0 and n > 0.75

a > −bn
�

R
R0

�n−1

a =
n [2n(1 + q0 + 2δ1)− 3(1 + δ1)]

(n− 1) [3 + n(8n− 13)] (q0 − 1)(1 + δ2)

b =
k(1− q0)−n

�
2n2(q0 − 1)− 3(1 + δ1) + 4n(1 + δ1)

�

(n− 1) [3 + n(8n− 13)] (1 + δ2)
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A simple model
Fixing the initial conditions at z = 2000 to match the ΛCDM model
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 "CDM model,

χ2
min = 542.68 (Ωm = 0.27± 0.02)

 f(R) gravity,

χ2
min = 546.204 (Ωm = 0.3)



F(R,T) gravity

Action,

Field equations,

where the energy-momentum tensor is defined as:

1

I. FORMULAE

f(R) = R−RHS

c1(R/RHS)n

c2(R/RHS)n + 1
, f(R) = R+

Rn(aRn − b)

1 + cRn
. (1)

SEH =

�
d4x

√
−g

�
R+ 2κ2Lm

�
→ S =

�
d4x

√
−g

�
f(R) + 2κ2Lm

�
. (2)

T (m)
µν = − 2√

−g

δ (
√
−gLm)

δgµν
(3)

Divergence of the field equations

2

Nonetheless, no full attention has been yet paid to study the density contrast evolution in f(R, T ) theories. Extensive
analysis have been carried out in the framework of non-standard couplings between the geometry and the matter

Lagrangian (see [20]). For our purpose in this communication, the dynamics of linear perturbations are performed

studying the problem of obtaining the exact equations for the evolution of matter density perturbations for f1(R) +

f2(T ) type gravitational Lagrangians. More precisely, we shall assume for simplicity the algebraic function f1(R) to

be the Einstein-Hilbert term R and the trace dependent function f2(T ) the one for which the covariant conservation

of the energy-momentum is accomplished. When interested in sub-Hubble modes, the usual approach consists of

studying the so-called quasi-static approximation where time derivatives of Bardeen’s potentials are neglected, and

only time derivatives involving density perturbations are kept [13, 15]. Let us point out that this approximation may

remove essential information about the evolution of the first-order perturbed fields [16, 23] and therefore requires

careful study when considered.

The paper is organized as follows: in Section II, we briefly review the state-of-the-art of f(R, T ) gravity. Section

III is devoted to introduce the background cosmological equations for f(R, T ) = f1(R) + f2(T ) models as well as

the condition to guarantee standard energy-momentum conservation for such models. Then, Section IV addressed

the calculation of the scalar perturbed equations for f(R, T ) = f1(R) + f2(T ) models while Section V deals with the

study of the quasi-static approximation for this kind of models. In Section VI we apply our results to two particular

models and numerical results are obtained and compared with the ΛCDM model. Finally in Section VII we conclude

with the main conclusions of this investigation.

II. f(R, T ) GRAVITY THEORIES

Let us start by writing the general action for f(R, T ) gravities [4],

S = SG + Sm =
1

2κ2

�
d
4x

√
−g (f(R, T ) + Lm) , (1)

where, κ2
= 8πG, R is the Ricci scalar and T represents the trace of the energy-momentum tensor, i.e., T = Tµ

µ,

while Lm is the matter Lagrangian. As usual the energy-momentum tensor is defined as,

Tµν =
2√
−g

δSm

δgµν
. (2)

Then, by varying the action with respect to the metric field gµν , the field equations are obtained,

fR(R, T )Rµν − 1

2
f(R, T )gµν − (gµν� −∇µ∇ν) fR(R, T ) = −

�
κ2

+ fT (R, T )
�
Tµν − fT (R, T )Θµν , (3)

where the subscripts on the function f(R, T ) mean differentiation with respect to R or T , and the tensor Θµν is

defined as,

Θµν ≡ gαβ
δTαβ

δgµν
= −2Tµν − gµνLm + 2gαβ

δLm

δgµνgαβ
. (4)

Note that for a regular f(R, T ) function, in absence of any kind of matter, the corresponding f(R) gravity equations

are recovered, and consequently the corresponding properties and the well-known solutions for f(R) gravity are also

satisfied by f(R, T ) theories in classical vacuum (for a review on f(R) theories, see [1]). Moreover, here we are

interested to study the behavior of this kind of theories for spatially flat FLRW spacetimes, which are expressed in

comoving coordinates by the line element,

ds2 = a2(η)
�
dη2 − dx2

�
(5)

where a(η) is the scale factor in conformal time η. Then, the main issue arises on the content of the Universe is

given by through the energy-momentum tensor, defined in (2). Since we are interested on flat FLRW cosmologies,

the usual content of the Universe (pressureless matter, radiation,... ) can be well described by perfect fluids, whose

energy-momentum tensors take the form,

Tµν = (ρ+ p)uµuν − pgµν . (6)
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Here ρ and p are the energy and pressure densities respectively, and u
µ
is the four-velocity of the fluid, which satisfies

uµu
µ
= 1, and in comoving coordinates is given by u

µ
= (1, 0, 0, 0). Since Lm = p, according to the definition

suggested in Ref. [4], the tensor (4) yields,

Θµν = −2Tµν − p gµν . (7)

Thus the equations motion become

fRRµν − 1

2
fgµν − (gµν� −∇µ∇ν) fR = −

�
κ2 − fT

�
Tµν + fT pgµν . (8)

where we have dropped the explicit dependences of f in R and T .

It is straightforward to see that the usual continuity equation is not satisfied for the field equations (8), and

consequently the covariant derivative of the energy-momentum tensor is not null in general ∇µT
µν �= 0. In order to

obtain the modified continuity equation, let us take the covariant derivative of the equation (8),

∇µ

�
fRRµν − 1

2
fgµν − (gµν� −∇µ∇ν) fR = −

�
κ2

+ fT

�
Tµν − fTΘµν

�

→ fR∇µ
Rµν +Rµν∇µ

fR − 1

2
gµν(fR∇µ

R+ fT∇µ
T )− (gµν∇µ� −∇µ∇µ∇ν) fR =

∇µ
�
−
�
κ2

+ fT

�
Tµν − fTΘµν

�
. (9)

Thus, using the identities ∇µ
�
Rµν − 1

2Rgµν

�
= 0, and (∇ν� − �∇ν) fR(R, T ) = Rµν∇µ

fR, the covariant derivative

of the energy-momentum tensor needs to satisfy,

∇µ
Tµν =

fT

κ2 + fT

�
1

2
gµν∇µ

T − (Tµν +Θµν)∇µ
ln fT −∇µΘµν

�
. (10)

Hence, for a perfect fluid with an equation of state p = wρ, being w a constant, the 0−component of the covariant

derivative (10) turns out to become,

�
κ2

+
w − 3

2
fT − (1 + w)TfTT

�
Ṫ + 3(1 + w)

�
H(κ2 − fT )− 2fTR(4HḢ + Ḧ)

�
T = 0 . (11)

where let us remind that T = T
µ
µ = ρ − 3p. The last equation differs from the usual continuity equation on the

non-null right hand side (r.h.s.). Thus, it may lead to violations of the usual evolution of the different species in the

Universe. Nevertheless, in the next section we focus our attention on a model that keeps the usual continuity equation

unchanged.

III. f1(R) + f2(T ) TYPE THEORIES

In this section, we choose the algebraic function f(R, T ) to be a sum of two independent functions

f(R, T ) = f1(R) + f2(T ) (12)

where f1(R) and f2(T ), respectively depend on the curvature R and the trace T . The generalized Einstein equations

from (8) yield

− 3Hf
�

1R0
+ 3H

�
f1R0 −

a
2

2
f10 = −κ2

a
2ρ0 + (1 + c

2
s)ρ0a

2
f2T0 +

a
2

2
f20 , (13)

f
��

1R0
+Hf

�

1R0
− (H

�
+ 2H

2
)f1R0 +

a
2

2
f10 = −κ2

a
2
c
2
sρ0 −

a
2

2
f20 . (14)

where the prime holds for the derivative with respect to η, H ≡ a
�
/a and the subscript 0 holds for unperturbed

background quantities: R0 denotes the scalar curvature corresponding to the unperturbed metric, ρ0 the unperturbed

In general, the divergence of the equations is not null, which may give rise to an anomalous behavior of the 
matter content.

T. Harko, F. S. N. Lobo, S. Nojiri and S. D. Odintsov, #Phys. Rev. D84, 024020 (2011)
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III. f1(R) + f2(T ) TYPE THEORIES
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where the prime holds for the derivative with respect to η, H ≡ a
�
/a and the subscript 0 holds for unperturbed

background quantities: R0 denotes the scalar curvature corresponding to the unperturbed metric, ρ0 the unperturbed

Friedmann equations,
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Nonetheless, no full attention has been yet paid to study the density contrast evolution in f(R, T ) theories. Extensive
analysis have been carried out in the framework of non-standard couplings between the geometry and the matter

Lagrangian (see [20]). For our purpose in this communication, the dynamics of linear perturbations are performed

studying the problem of obtaining the exact equations for the evolution of matter density perturbations for f1(R) +
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be the Einstein-Hilbert term R and the trace dependent function f2(T ) the one for which the covariant conservation
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only time derivatives involving density perturbations are kept [13, 15]. Let us point out that this approximation may

remove essential information about the evolution of the first-order perturbed fields [16, 23] and therefore requires
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The paper is organized as follows: in Section II, we briefly review the state-of-the-art of f(R, T ) gravity. Section

III is devoted to introduce the background cosmological equations for f(R, T ) = f1(R) + f2(T ) models as well as

the condition to guarantee standard energy-momentum conservation for such models. Then, Section IV addressed

the calculation of the scalar perturbed equations for f(R, T ) = f1(R) + f2(T ) models while Section V deals with the

study of the quasi-static approximation for this kind of models. In Section VI we apply our results to two particular

models and numerical results are obtained and compared with the ΛCDM model. Finally in Section VII we conclude

with the main conclusions of this investigation.

II. f(R, T ) GRAVITY THEORIES

Let us start by writing the general action for f(R, T ) gravities [4],

S = SG + Sm =
1

2κ2

�
d
4x

√
−g (f(R, T ) + Lm) , (1)

where, κ2
= 8πG, R is the Ricci scalar and T represents the trace of the energy-momentum tensor, i.e., T = Tµ

µ,

while Lm is the matter Lagrangian. As usual the energy-momentum tensor is defined as,

Tµν =
2√
−g

δSm

δgµν
. (2)

Then, by varying the action with respect to the metric field gµν , the field equations are obtained,
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κ2

+ fT (R, T )
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Tµν − fT (R, T )Θµν , (3)

where the subscripts on the function f(R, T ) mean differentiation with respect to R or T , and the tensor Θµν is

defined as,
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δTαβ

δgµν
= −2Tµν − gµνLm + 2gαβ

δLm

δgµνgαβ
. (4)

Note that for a regular f(R, T ) function, in absence of any kind of matter, the corresponding f(R) gravity equations

are recovered, and consequently the corresponding properties and the well-known solutions for f(R) gravity are also

satisfied by f(R, T ) theories in classical vacuum (for a review on f(R) theories, see [1]). Moreover, here we are

interested to study the behavior of this kind of theories for spatially flat FLRW spacetimes, which are expressed in

comoving coordinates by the line element,

ds2 = a2(η)
�
dη2 − dx2

�
(5)

where a(η) is the scale factor in conformal time η. Then, the main issue arises on the content of the Universe is

given by through the energy-momentum tensor, defined in (2). Since we are interested on flat FLRW cosmologies,

the usual content of the Universe (pressureless matter, radiation,... ) can be well described by perfect fluids, whose

energy-momentum tensors take the form,

Tµν = (ρ+ p)uµuν − pgµν . (6)
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energy density, with f10 ≡ f1(R0), f1R0 ≡ df1(R0)/dR0, f20 ≡ f2(T0), f2T0 ≡ df2(T0)/dT0 and c2s = p0/ρ0. The
continuity equation (11) for Lagrangians given by (12) yields

∇µT
µ
0 ν =

1

κ2 − f2T0

�
δµν ∂µ

�
1

2
f20 + c2sρ0f2T0

�
+ T µ

0 ν∂µf2T0

�
, (15)

showing explicitly that the energy-momentum tensor is not a priori covariantly conserved in f(R, T ) theories. Thus,
for these theories, the test particles moving in a gravitational field do not follow geodesic lines. By exploring the
equation (15) for ν = 0 component, one gets

ρ
�

0 + 3Hρ0(1 + c2s) =
1

κ2 − f2T0

�
(1 + c2s)ρ0f

�
2T0

+ c2sρ
�
0f2T0 +

1

2
f �
20

�
. (16)

Note that whether f2 vanishes (i.e., f(R) theories) or characterizes a non-running cosmological constant, both f
�

2T0

and f2T0 vanish, and then the continuity equation in these scenarios becomes

ρ
�

0 + 3H
�
1 + c2s

�
ρ0 = 0 . (17)

In order to Lagrangians such as (12) consistent with the standard conservation equation, the r.h.s. of (15) has to
vanish leading to the differential equation

�
1 + c2s

�
T0f2T0T0 +

1

2

�
1− c2s

�
f2T0 = 0 , (18)

where c2s �= 1/3. The general solution of this differential equation reads

f2(T0) = αT

1+3c2s
2(1+c2s)
0 + β , (19)

where α and β are integration constants. In the case of a barotropic equation of state c2s = 0, i.e., dust, the model
(19) becomes

f2(T0) = αT 1/2
0 + β (20)

This function represents the unique Lagrangian that satisfies the usual continuity equation (17) within the class of
models given by expression (12).

IV. PERTURBATIONS IN f(R, T ) THEORIES

Let us consider the scalar perturbations of a flat FLRW metric in the longitudinal gauge

ds2 = a2(η)
�
(1 + 2Φ)dη2 − (1− 2Ψ)dx2

�
, (21)

where Φ ≡ Φ(η,x) and Ψ ≡ Ψ(η,x) are the scalar perturbations. The components of perturbed energy-momentum
tensor in this gauge are given by

δ̂T 0
0 = δ̂ρ = ρ0δ , δ̂T i

j = −δ̂p δij = −c2sρ0δ
i
jδ , δ̂T 0

i = −δ̂T i
0 = −

�
1 + c2s

�
ρ0∂iv , (22)

where v denotes the potential for the velocity perturbations. Using the model (12), the perturbed metric (21) and
the perturbed energy-momentum tensor (22), the first order perturbed equations reads

f1R0 δ̂G
µ
ν + (R µ

0ν +∇µ∇ν − δµν �) f1R0R0 δ̂R+
��
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∂γf1R0 = − (κ− f2T0) δ̂T

µ
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(1− c2s)f2T0δ

µ
ν + (1− 3c2s)(1 + c2s)ρ0f2T0T0u

µuν

�
δ̂ρ , (23)

where f1R0R0 = d2f1(R0)/dR2
0, ∇α∇α and ∇ holds for the covariant derivative with respect to the unperturbed metric

(5). In (23), we have made use of the relation linking the trace to the enery density, T0 = ρ0 − 3p0 = (1− 3c2s)ρ0, and

Continuity equation,

f2(T ) = α
√
T + β

The usual continuity equation is recovered when,

F. Alvarenga, A. Cruz-Dombriz, S. Houndjo, M. Rodrigues, DSG, to appear in PRD, ArXiv:1302.1866



F(R,T) gravity
Cosmological perturbations

4

energy density, with f10 ≡ f1(R0), f1R0 ≡ df1(R0)/dR0, f20 ≡ f2(T0), f2T0 ≡ df2(T0)/dT0 and c2s = p0/ρ0. The
continuity equation (11) for Lagrangians given by (12) yields

∇µT
µ
0 ν =

1

κ2 − f2T0

�
δµν ∂µ

�
1

2
f20 + c2sρ0f2T0

�
+ T µ

0 ν∂µf2T0

�
, (15)

showing explicitly that the energy-momentum tensor is not a priori covariantly conserved in f(R, T ) theories. Thus,
for these theories, the test particles moving in a gravitational field do not follow geodesic lines. By exploring the
equation (15) for ν = 0 component, one gets

ρ
�

0 + 3Hρ0(1 + c2s) =
1

κ2 − f2T0

�
(1 + c2s)ρ0f

�
2T0

+ c2sρ
�
0f2T0 +

1

2
f �
20

�
. (16)

Note that whether f2 vanishes (i.e., f(R) theories) or characterizes a non-running cosmological constant, both f
�

2T0

and f2T0 vanish, and then the continuity equation in these scenarios becomes

ρ
�

0 + 3H
�
1 + c2s

�
ρ0 = 0 . (17)

In order to Lagrangians such as (12) consistent with the standard conservation equation, the r.h.s. of (15) has to
vanish leading to the differential equation

�
1 + c2s

�
T0f2T0T0 +

1

2

�
1− c2s

�
f2T0 = 0 , (18)

where c2s �= 1/3. The general solution of this differential equation reads

f2(T0) = αT

1+3c2s
2(1+c2s)
0 + β , (19)

where α and β are integration constants. In the case of a barotropic equation of state c2s = 0, i.e., dust, the model
(19) becomes

f2(T0) = αT 1/2
0 + β (20)

This function represents the unique Lagrangian that satisfies the usual continuity equation (17) within the class of
models given by expression (12).

IV. PERTURBATIONS IN f(R, T ) THEORIES

Let us consider the scalar perturbations of a flat FLRW metric in the longitudinal gauge

ds2 = a2(η)
�
(1 + 2Φ)dη2 − (1− 2Ψ)dx2

�
, (21)

where Φ ≡ Φ(η,x) and Ψ ≡ Ψ(η,x) are the scalar perturbations. The components of perturbed energy-momentum
tensor in this gauge are given by

δ̂T 0
0 = δ̂ρ = ρ0δ , δ̂T i

j = −δ̂p δij = −c2sρ0δ
i
jδ , δ̂T 0

i = −δ̂T i
0 = −

�
1 + c2s

�
ρ0∂iv , (22)

where v denotes the potential for the velocity perturbations. Using the model (12), the perturbed metric (21) and
the perturbed energy-momentum tensor (22), the first order perturbed equations reads

f1R0 δ̂G
µ
ν + (R µ

0ν +∇µ∇ν − δµν �) f1R0R0 δ̂R+
��

δ̂gµα
�
∇ν∇α − δµν

�
δ̂gαβ

�
∇α∇β

�
f1R0

−
�
gαµ0

�
δ̂Γγ

αν

�
− δµν g

αβ
0

�
δ̂Γγ

βα

��
∂γf1R0 = − (κ− f2T0) δ̂T

µ
ν

+

�
1

2
(1− c2s)f2T0δ

µ
ν + (1− 3c2s)(1 + c2s)ρ0f2T0T0u

µuν

�
δ̂ρ , (23)

where f1R0R0 = d2f1(R0)/dR2
0, ∇α∇α and ∇ holds for the covariant derivative with respect to the unperturbed metric

(5). In (23), we have made use of the relation linking the trace to the enery density, T0 = ρ0 − 3p0 = (1− 3c2s)ρ0, and

4

energy density, with f10 ≡ f1(R0), f1R0 ≡ df1(R0)/dR0, f20 ≡ f2(T0), f2T0 ≡ df2(T0)/dT0 and c2s = p0/ρ0. The
continuity equation (11) for Lagrangians given by (12) yields

∇µT
µ
0 ν =

1

κ2 − f2T0

�
δµν ∂µ

�
1

2
f20 + c2sρ0f2T0

�
+ T µ

0 ν∂µf2T0

�
, (15)

showing explicitly that the energy-momentum tensor is not a priori covariantly conserved in f(R, T ) theories. Thus,
for these theories, the test particles moving in a gravitational field do not follow geodesic lines. By exploring the
equation (15) for ν = 0 component, one gets

ρ
�

0 + 3Hρ0(1 + c2s) =
1

κ2 − f2T0

�
(1 + c2s)ρ0f

�
2T0

+ c2sρ
�
0f2T0 +

1

2
f �
20

�
. (16)

Note that whether f2 vanishes (i.e., f(R) theories) or characterizes a non-running cosmological constant, both f
�

2T0

and f2T0 vanish, and then the continuity equation in these scenarios becomes

ρ
�

0 + 3H
�
1 + c2s

�
ρ0 = 0 . (17)

In order to Lagrangians such as (12) consistent with the standard conservation equation, the r.h.s. of (15) has to
vanish leading to the differential equation

�
1 + c2s

�
T0f2T0T0 +

1

2

�
1− c2s

�
f2T0 = 0 , (18)

where c2s �= 1/3. The general solution of this differential equation reads

f2(T0) = αT

1+3c2s
2(1+c2s)
0 + β , (19)

where α and β are integration constants. In the case of a barotropic equation of state c2s = 0, i.e., dust, the model
(19) becomes

f2(T0) = αT 1/2
0 + β (20)

This function represents the unique Lagrangian that satisfies the usual continuity equation (17) within the class of
models given by expression (12).

IV. PERTURBATIONS IN f(R, T ) THEORIES

Let us consider the scalar perturbations of a flat FLRW metric in the longitudinal gauge

ds2 = a2(η)
�
(1 + 2Φ)dη2 − (1− 2Ψ)dx2

�
, (21)

where Φ ≡ Φ(η,x) and Ψ ≡ Ψ(η,x) are the scalar perturbations. The components of perturbed energy-momentum
tensor in this gauge are given by

δ̂T 0
0 = δ̂ρ = ρ0δ , δ̂T i

j = −δ̂p δij = −c2sρ0δ
i
jδ , δ̂T 0

i = −δ̂T i
0 = −

�
1 + c2s

�
ρ0∂iv , (22)

where v denotes the potential for the velocity perturbations. Using the model (12), the perturbed metric (21) and
the perturbed energy-momentum tensor (22), the first order perturbed equations reads

f1R0 δ̂G
µ
ν + (R µ

0ν +∇µ∇ν − δµν �) f1R0R0 δ̂R+
��

δ̂gµα
�
∇ν∇α − δµν

�
δ̂gαβ

�
∇α∇β

�
f1R0

−
�
gαµ0

�
δ̂Γγ

αν

�
− δµν g

αβ
0

�
δ̂Γγ

βα

��
∂γf1R0 = − (κ− f2T0) δ̂T

µ
ν

+

�
1

2
(1− c2s)f2T0δ

µ
ν + (1− 3c2s)(1 + c2s)ρ0f2T0T0u

µuν

�
δ̂ρ , (23)

where f1R0R0 = d2f1(R0)/dR2
0, ∇α∇α and ∇ holds for the covariant derivative with respect to the unperturbed metric

(5). In (23), we have made use of the relation linking the trace to the enery density, T0 = ρ0 − 3p0 = (1− 3c2s)ρ0, and

6

that when combined yield

δ�� +H

�
1− 3f2T0

2 (κ2 − f2T0)

�
δ� + k2

f2T0

2(κ2 − f2T0)
δ + k2Φ− 3Ψ�� − 3H

�
1− 3f2T0

2 (κ2 − f2T0)

�
Ψ� = 0 (34)

Hence, the complete set of equations that describes the general linear perturbations for the kind of models considered
here, f(R, T ) = f1(R) + f2(T ), have been obtained, which provides enough information about the behavior of the
perturbations within this class of theories, that can be compared with expected results from ΛCDM model.

V. EVOLUTION OF SUB-HUBBLE MODES AND THE QUASI-STATIC APPROXIMATION

We are interested in the possible effects on the density contrast evolution once the perturbations enter the Hubble
radius in the matter dominated era. In the sub-Hubble limit, i.e., H � k, and after having neglected all the time
derivative for the Bardeen’s potentials Φ and Ψ, the equations (25) and (26) can be combined yielding

Ψ = Φ
1 + 2k2

a2

f1R0R0
f1R0

1 + 4k2

a2

f1R0R0
f1R0

; Φ = − 1

2k2




1 + 4k2

a2

f1R0R0
f1R0

1 + 3k2

a2

f1R0R0
f1R0



�
κ2 − f2T0

� a2ρ0
f1R0

δ . (35)

In addition, the equation (34) in the QS approximation yields,

δ�� +H

�
1− 3f0

2T

2 (κ2 − f0
2T )

�
δ� + k2

f0
2T

2(κ2 − f0
2T )

δ + k2Φ = 0 (36)

Then, by using the previous result (35) in the equation (36) one gets

δ�� +H

�
1− 3f2T0

2 (κ2 − f2T0)

�
δ� +

1

2



k2 f2T0

(κ2 − f2T0)
− (κ2 − f2T0)

a2ρ0
f1R0




1 + 4k2

a2

f1R0R0
f1R0

1 + 3k2

a2

f1R0R0
f1R0







 δ = 0 (37)

that can be understood as the quasi-static equation for f(R, T ) models of the form (19). By neglecting in (37) the
terms f2(T0), i.e., paying attention only to f(R) theories, one recovers the usual quasi-static approximation for those
theories (see for instance [22], [23] and [24])

δ
��
+Hδ

�
−




1 + 4k2

a2

f1R0R0
f1R0

1 + 3k2

a2

f1R0R0
f1R0



 κ2a2ρ0
2f1R0

δ = 0 (38)

and for GR (f1(R0) = R0), the quasi-static equation for δ becomes the well-known k-independent expression

δ�� +Hδ� − 4πGρ0a
2δ = 0 (39)

Note that the effect of the f2(T0) terms in (37) is twofold: first, the coefficient of δ� gets an extra term that depends
on the first derivative of f2(T0) with respect to T0 that in general will be time dependent. Second, the coefficient
for δ is also modified by adding a k2 dependence that is absent the standard quasi-static limit both in GR and in
f(R) theories and modifying as well the usual coefficient already present for f(R) theories by a factor (κ2 − f2T0).
The k2-presence may have extraordinary consequences since for f(R) theories it is usually claimed that in the two
asymptotic limits (i.e., either GR or f(R) domination), the quasi-static equation is scale independent and only in the
transient regime, differences associated to the scale may show up. For the class of f(R, T ) theories under study, the
k2 term will be always dominant for deep Sub-Hubble modes at any time of the cosmological evolution.

On the other hand, a qualitative analysis taking into account that κ2 ≈ M−2
P ≈ (1019GeV)−2 and f2T0 ≈ ρ−1/2

critical ≈
(10−3eV)−2, implies that equation (37) may be simplified yielding

δ�� +
5

2
Hδ� +

1

2



−k2 + f2T0

a2ρ0
f1R0




1 + 4k2

a2
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f1R0

1 + 3k2

a2

f1R0R0
f1R0
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



 δ = 0 . (40)

Furthermore, if now one is interested only in extreme sub-Hubble modes, it is clear that (40) becomes

δ�� +
5

2
Hδ� +

1

2

�
−k2 +

4

3
f2T0

a2ρ0
f1R0

�
δ = 0 (41)

The perturbed equation can be reduced to,

In the sub-Hubble limit, k � H
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The k2-presence may have extraordinary consequences since for f(R) theories it is usually claimed that in the two
asymptotic limits (i.e., either GR or f(R) domination), the quasi-static equation is scale independent and only in the
transient regime, differences associated to the scale may show up. For the class of f(R, T ) theories under study, the
k2 term will be always dominant for deep Sub-Hubble modes at any time of the cosmological evolution.

On the other hand, a qualitative analysis taking into account that κ2 ≈ M−2
P ≈ (1019GeV)−2 and f2T0 ≈ ρ−1/2

critical ≈
(10−3eV)−2, implies that equation (37) may be simplified yielding

δ�� +
5

2
Hδ� +

1

2



−k2 + f2T0

a2ρ0
f1R0




1 + 4k2

a2

f1R0R0
f1R0

1 + 3k2

a2

f1R0R0
f1R0







 δ = 0 . (40)

Furthermore, if now one is interested only in extreme sub-Hubble modes, it is clear that (40) becomes

δ�� +
5

2
Hδ� +

1

2

�
−k2 +

4

3
f2T0

a2ρ0
f1R0

�
δ = 0 (41)
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that in this limit and after having considered reasonable gravitational Lagrangians, i.e., not divergent, yields

δ�� +
5

2
Hδ� − 1

2
k2δ = 0 . (42)

The last expression, as well as the intermediate results (40) and (41) prove that gravitational Lagrangians depending
on the trace of the energy-momentum tensor and satisfying the usual conservation equation will exhibit a density
contrast evolution that is k-dependent for sub-Hubble modes. This fact implies a contradiction with the usual
assumptions about scale-invariant spectrum of matter perturbations before entering the Hubble horizon that can be
seen, for instance in the GR density contrast evolution (39). Therefore, models such as (20), i.e., the only ones
guaranteeing the standard conservation equation, seem to be theoretically excluded as will be explicitly shown in the
next section.

In addition, note that the equation (37) exhibits a singular point at κ2 − f2T0 = 0. For the Lagrangian f2(T0) =

αT 1/2
0 + β, such singular point is easily identified. From now on, let us assume the following coupling constant,

α ≡ c1κ
2(ρtoday)

1/2 , (43)

where c1 is a dimensionless constant,. This parametrization is justified in order to fix the correct dimensions for the
coupling constant α. On the other hand, by solving the continuity equation (17) for a pressureless fluid, the evolution
of the matter density yields

ρ0 = ρtoday a
−3 = ρtoday(1 + z)3 , (44)

where the usual relation 1 + z = a−1 has been used. Then, the expression appearing in the denominator of some
terms in the equation (37) is given by

κ2 − f2T0 = κ2

�
1− c1

(1 + z)3/2

�
. (45)

Hence, a singularity occurs at zs = c2/31 − 1. Then, the avoidance of such singularity constrains the value of the free
parameter c1:

• c1 < 0, the singular point is located at zs < −1, outside of the allowed range for the redshift, as defined above.

• c1 > 0, here we can distinguish between two cases: if 0 < c1 < 1, then −1 < zs < 0, and the singularity will
occur in the future, while if c1 ≥ 1, the singularity is located at zs ≥ 0, i.e., either at present or past cosmological
evolution.

In order to avoid any singularity, at least for the range z > 0, we shall assume c1 < 1. Note also that in the
neighbourhood of the singularity, the equation (37) reduces to,

δ�� −H
3f2T0

2 (κ2 − f2T0)
δ� + k2

f2T0

2(κ2 − f2T0)
δ = 0 (46)

and in consequence the perturbations would behave as a damped oscillator, as is analyzed in the following section
and shown in Fig. 3.

VI. NUMERICAL RESULTS

In order to check the results obtained in the previous section, we study two particular f(R, T ) models with f1(R0)
assumed to be given by the usual term proportional to the Ricci scalar, i.e., f1(R0) = R0. This choice encapsulates a
modification to GR purely originated by the function f2(T0) introduced in Section 2 through the expression (19).

A. fA(R0, T0) = R0 + αT 1/2
0

For this function we parametrize the constant α according to expression (43), thus possessing the appropriate
dimensions. In this case, one can solve the background evolution that can be rewritten as

H̃
2 = Ω0

ma−1 + (1− Ω0
m)a1/2 (47)
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was fixed to 0.27 for illustrative purposes. It is seen how whereas the ΛCDM is k-independent, the fA(R, T ) model evolutions diverge for

all the studied modes and leave the linear region at redshifts z ≈ 100. For larger k-modes (deep Sub-Hubble modes) the divergence

happens at larger redshift (earlier in the cosmological evolution).

with Ω0
m ≡ κ2ρm(ηtoday)/3H2

0 , the usual fractional matter density today, H0 the Hubble parameter today and
dimensionless conformal time defined as η̃ = H0η. According to the equation (47), the parameter c1 must accomplish

c1 = −1− Ω0
m

Ω0
m

(48)

For this model, we compare the density contrast obtained from (40) with the standard ΛCDM quasi-static approx-
imation (39). The initial conditions are given at redshift z = 1000 where δ is assumed to behave as in a matter
dominated universe, i.e. δk(η) ∝ a(η) with no k-dependence. In Fig. 1 we have plotted the evolution of the density
contrast for several modes. One can see how the strong k-dependence of equation (40) renders the evolution of these
modes completely incompatible with the density contrast evolution provided by the Concordance ΛCDM model and
leads δ outside the linear order at redshift z ≈ 100.

B. fB(R0, T0) = R0 + αT 1/2
0 − 2β

Let us now consider the general model found in (19), which also satisfies the usual continuity equation in the
background but where the usual GR term is supplemented with a cosmological constant −2β. The first FLRW
equation (14) yields,

H̃
2 = Ω0

ma
−1 − c1Ω

0
ma

1/2 + c2a
2
, (49)

with c1 again given by (43), and β ≡ 3H2
0 c2 in order to provide the correct dimensions to the free constants parameters

{α, β}. By evaluating equation (49) at z = 0 (with a(z = 0) = 1), one gets the constraint,

1 = Ω0
m − c1Ω

0
m + c2 → c2 = 1− Ω0

m(1− c1) . (50)

This expression provides a constraint on the dimensionless parameters {c1, c2}, where one remains arbitrary. As for
the previous case, the strong dependence on k in the equation (37) leads to an evolution of the matter perturbations
incompatible with the observations. In fact, only a very restricted limit for the free parameter c1 can avoid such

F(R,T) gravity
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with Ω0
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0 , the usual fractional matter density today, H0 the Hubble parameter today and
dimensionless conformal time defined as η̃ = H0η. According to the equation (47), the parameter c1 must accomplish

c1 = −1− Ω0
m

Ω0
m

(48)

For this model, we compare the density contrast obtained from (40) with the standard ΛCDM quasi-static approx-
imation (39). The initial conditions are given at redshift z = 1000 where δ is assumed to behave as in a matter
dominated universe, i.e. δk(η) ∝ a(η) with no k-dependence. In Fig. 1 we have plotted the evolution of the density
contrast for several modes. One can see how the strong k-dependence of equation (40) renders the evolution of these
modes completely incompatible with the density contrast evolution provided by the Concordance ΛCDM model and
leads δ outside the linear order at redshift z ≈ 100.

B. fB(R0, T0) = R0 + αT 1/2
0 − 2β

Let us now consider the general model found in (19), which also satisfies the usual continuity equation in the
background but where the usual GR term is supplemented with a cosmological constant −2β. The first FLRW
equation (14) yields,

H̃
2 = Ω0

ma
−1 − c1Ω

0
ma

1/2 + c2a
2
, (49)

with c1 again given by (43), and β ≡ 3H2
0 c2 in order to provide the correct dimensions to the free constants parameters

{α, β}. By evaluating equation (49) at z = 0 (with a(z = 0) = 1), one gets the constraint,

1 = Ω0
m − c1Ω

0
m + c2 → c2 = 1− Ω0

m(1− c1) . (50)

This expression provides a constraint on the dimensionless parameters {c1, c2}, where one remains arbitrary. As for
the previous case, the strong dependence on k in the equation (37) leads to an evolution of the matter perturbations
incompatible with the observations. In fact, only a very restricted limit for the free parameter c1 can avoid such
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Figure 2: δk evolution for fB(R, T ) model according to the quasi-static evolution given by (37) and ΛCDM given by (39). Here we

have assumed a value c1 = −10
−3

. As previously, the dependence on k leads to a strong growth of the matter perturbations for large

values of k, whereas the behavior is similar to the ΛCDM model for the modes k < 200H0.

strong violations together with an upper limit on k. In Fig. 2, the case for a negative c1 = −10−3 is considered,
yielding a similar behavior as in Fig. 1. Another illustrative example of the behavior of the equation (37) is shown
in Fig. 3 for the value c1 = 10−3. In this case, it is straightforward to check that the equation (37) turns out the
damped oscillator equation for large k-modes, since the k dependent term is positive and dominates over the other
terms for small redshifts.

VII. CONCLUSIONS

In this work we have studied the evolution of matter density perturbations in f(R, T ) theories of gravity. We
have presented the required constraint to be satisfied by these theories in order to guarantee the standard continuity
equation for the energy-momentum tensor. This constraint restricts severely the form of f(R, T ) models able to
preserve both BBN abundances and the usual behavior of both radiation and matter as cosmological fluids. Thus,
for models of the form f1(R) + f2(T ) we have determined the unique f2(T ) ∝ T 1/2 model able to obey the standard
continuity equation.

Once such viability condition was imposed in the background evolution, we have obtained the quasi-static approxi-
mation for these theories and shown that, for sub-Hubble modes the density contrast obeys a second order differential
equation with strong wavenumber dependence. This fact is in contrast with well-known results for f(R) fourth-order
gravity theories and also Hilbert-Einstein action with a cosmological constant.

Then, we have compared our results with the usual quasi-static approximation in general relativity and shown
how these two density contrasts evolve differently. As analyzed in the bulk of the manuscript, the quasi-static
approximation equation may also contain a singular point forcing the matter perturbations to diverge along the
cosmological evolution. This assumption provides a way to constraining the value of the coupling constant c1, but
does not prevent the strong deviation of the sub-Hubble models for this kind of models. Moreover, the departure
from the linear regime in this kind of models may happen very fast due to the explicit wavenumber dependence as we
showed in our first studied model. Alternatively, the study of a positive coupling constant for the modified term T 1/2

led to a damped harmonic oscillator for large k-modes, as we illustrated in the second model under consideration, in
particular in the case depicted in Fig. 3.

Hence, these results lie in strong contradiction with the usually assumed behavior of the density contrast and
therefore sets strong limitations in the viability of these theories. Consequently our investigation concludes that
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with Ω0
m ≡ κ2ρm(ηtoday)/3H2

0 , the usual fractional matter density today, H0 the Hubble parameter today and
dimensionless conformal time defined as η̃ = H0η. According to the equation (47), the parameter c1 must accomplish

c1 = −1− Ω0
m

Ω0
m

(48)

For this model, we compare the density contrast obtained from (40) with the standard ΛCDM quasi-static approx-
imation (39). The initial conditions are given at redshift z = 1000 where δ is assumed to behave as in a matter
dominated universe, i.e. δk(η) ∝ a(η) with no k-dependence. In Fig. 1 we have plotted the evolution of the density
contrast for several modes. One can see how the strong k-dependence of equation (40) renders the evolution of these
modes completely incompatible with the density contrast evolution provided by the Concordance ΛCDM model and
leads δ outside the linear order at redshift z ≈ 100.

B. fB(R0, T0) = R0 + αT 1/2
0 − 2β

Let us now consider the general model found in (19), which also satisfies the usual continuity equation in the
background but where the usual GR term is supplemented with a cosmological constant −2β. The first FLRW
equation (14) yields,

H̃
2 = Ω0

ma
−1 − c1Ω

0
ma

1/2 + c2a
2
, (49)

with c1 again given by (43), and β ≡ 3H2
0 c2 in order to provide the correct dimensions to the free constants parameters

{α, β}. By evaluating equation (49) at z = 0 (with a(z = 0) = 1), one gets the constraint,

1 = Ω0
m − c1Ω

0
m + c2 → c2 = 1− Ω0

m(1− c1) . (50)

This expression provides a constraint on the dimensionless parameters {c1, c2}, where one remains arbitrary. As for
the previous case, the strong dependence on k in the equation (37) leads to an evolution of the matter perturbations
incompatible with the observations. In fact, only a very restricted limit for the free parameter c1 can avoid such
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Figure 3: δk evolution for fB(R, T ) model according to the quasi-static evolution given by (37) and ΛCDM given by (39). Here we

have assumed a positive value for the free parameter c1 = 10
−3

, which leads to an oscillating behavior of the matter perturbations,

which turns out stronger as k is larger, and whose oscillations are observed for large small redshifts. The model mimics the ΛCDM

model only those modes small enough k < 50H0.

models of the form f(R, T ) = f1(R)+f2(T ), where the only viable f2(T ) function is given by (19), lead to catastrophic

behaviors for the matter perturbations evolution in the sub-Hubble modes, preventing this class of models to be

considered as competitive candidates for dark energy.
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Summary
Viable modified gravities reproduce a sudden singularity, which 
may be circumvented in the scalar-tensor picture.

The transition to a phantom phase probably occurs in the class of 
the so-called viable f(R) gravities, where the EoS parameter 
presents an oscillating behavior, but no future singularity or Little 
Rip occurs.

The analysis of a simple model of f(R) gravity, and its test with 
the Sne Ia reveals that the f(R) gravities can describe late-time 
acceleration with great accuracy.

f(R,T) gravities seem to be ruled out, since the non-standard 
coupling among matter and gravity introduce an anomalous 
behavior in the matter perturbations.


